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Abstract

In this paper, an experiment is described on the study of the relationships between the digitizing error and the
curvature. A simulated map was made with 8 circles of different curvatures. Ten operators digitized this map
each for 6 times. An average digitizing density was determined for each operator. The original map was used
as a reference for digitizing error calculation. Digitizing errors evaluated in this research included positional
error, average error band, relative area error and average positional error. In addition, positional error distri-
butions along original circle boundaries were calculated for each operator. The experiment revealed: (1)aera

errors and digitizing densities tended to be larger as curvature increases; (2) the mean distributions of posi-
tional errors caused by digitization along a circular boundary in most cases did not coincide with the boundary.
The results implied that areas of small-sized compact polygons would be underestimated from digitized maps.
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I. ERRORS AND UNCERTAINTIES IN SPA-
TIAL DATA '

Knowledge on errors and uncertainties is critical to
the development and application of spatial data-
bases [1-3]. Research on error and uncertainty in
the past can be grouped into: (1) classification of
errors and uncertainties [2][4-5]; (2) study of uncer-
tainty propagation in geographic models and error
modeling [6-11] [27-28]; (3) uncertainty estimation
in categorical maps using simulation methods [12-
13]; (4) identification of error in GIS data bases [14];
and (5) determination and simulation of digitiza-
tion errors [15-22].

Error refers to as the deviation from a true value.
For example, an error: Al in length measurement,
is defined as L-! where L is the “true” value and / is
the measured value [5]. Although it is impossible
to obtain absolutely true values from measurements,
true values can be used based on mathematical mod-
eling in simulation studies. If true values are not
available, uncertainties are surrogates of errors. In
this sense, impreciseness, vagueness, and incom-
pleteness of data are all considered as uncertainty

Although different researchers have different defi-
nitions on uncertainty [23], we will not attempt to
define it in this paper. Researchers have made vari-
ous classifications of errors and uncertainties [1][4].
Bedard [1] identified four types of uncertainties.
These are: 1) conceptual uncertainties, 2) spatial
uncertainties, 3) non-spatial uncertainties, and 4)
meta-uncertainties. 1) affects the classification of
the phenomena. An example is the classification
of continuously or naturally varying phenomena
into taxonomic or spatial groups. 2) and 3) are re-
lated to measurement limitations of the quantita-
tive and qualitative properties of an entity [4]. Mea-
surements are inherently imprecise. They contrib-
ute to uncertainties in spatial and non-spatial at-
tributes of the phenomena. In this context, spatial
errors refer to the differences between the “true”
locations of certain phenomena and their measured
locations in various forms of coordinates. Spatial
errors are also called “positional errors” or “geo-
metrical distortions”. Examples of spatial error are
essentially locational errors of any point and line



features in a map such as contour lines, boundaries
of different terrain objects and themes. Non-spatial
errors, also called “attribute errors” or “categorical
errors”, refer to the differences between “true” val-
ues of certain phenomena and their measured ones.
Examples of non-spatial values are forest density,
population, soil salinity, temperature, etc. 4) refers
to the degree to which the other types of uncertain-
ties are known. These four types of uncertainties
combine together constitute the total amount of un-
certainty in a system [1].

Uncertainties associated with a true value is often
modeled by a normal distribution [11][17][20][24-25].
Since the true value is not known, the uncertainty
of a measured value in relation to its true value is
modeled by the same normal distribution (Figure 1).
Spatial uncertainty can be treated as a confidence
indicator of a particular measured position. Thus,
given a specific confidence level, say 90%, according
to the distribution one can determine a distance in-
terval such as the epsilon in Figure 1 defining the
band into which the true value will fall with a prob-
ability of 0.90. The band width may change along a
measured line such as a contour line. One can clas-
sify the probability levels into ranges and determine
their corresponding epsilon intervals and map them
accordingly [25].

Although a number of models including the one
shown in Figure 1 for spatial uncertainty exist, only
a few studies under very specific conditions have
been made to determine the actual parameters of
these models. Bolstad et al. [15] studied the uncer-
tainty involved in the manual digitization of point
data with known coordinates. Dunn et al. [17] in-
vestigated the effect of digitizing errors on the area
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Figure 1. The likelihood of a true value falling into
a band centered by a measured value.

estimation of land-use types. In Dunn et al. [17],
boundaries in the interpreted land-use map was
digitized twice and the polygon segments obtained
from different time of digitization were compared
to obtain estimates of the uncertainty band. Dutton
[24] proposed a two dimensional model for curvi-
linear map features and made simulations to de-
termine the uncertainty distribution along a line
segment. However, Dutton’s model is not suitable
to model the uncertainties arise from the digitiza-
tion of a curve. Nonetheless, Dutton has made some
interesting suggestions regarding the uncertainty
representation. He suggested two ways of uncer-
tainty representation: encoding the uncertainty for
each digitized point and use of hierarchical tessel-
lation. Shi [3] expanded the first method to repre-
senting the spatial uncertainty of lines.

Many researchers assumed that positional error or
uncertainty distribution of a cross-section along a
curvilinear map feature was somewhat similar to a
normal distribution. For simplicity reasons, an
epsilon band was recommended for use to repre-
sent uncertainties assuming that the error distri-
bution is symmetrically distributed with the mean
coinciding with the true curvilinear feature [26].
However, there have been few studies undertaken
to verify the underlying assumption for the use of
epsilon band. Two studies proved that the normal
distribution assuption was inappropriate. Traylor
[22] studied errors involved in the digitization of
the boundary of Australia, a generalized scribed
line, by a group of operators. A master file was
created as reference by carefully digitizing a 25-time
enlarged version of the boundary of Australia.
Traylor concluded that line-following error can be
measured and the associated sequence of errors
cannot be considered as a random phenomenon but
partially related to the direction of motion of hands.
Traylor recommended that line-following perfor-
mance of an individual could be improved by estab-
lishing a training program based on his findings.
In another study, Bolstad et al. [15] examined er-
rors of manually digitized point features from topo-
graphic maps. They found that the error patterns
of the digitized points were not normally distrib-
uted. Gong and Chen [18] examined boundary er-
rors or uncertainties from digitized land-use maps
produced by several individuals for the same map-
ping area. It was found that the error or uncer-
tainty in a digitized land-use map is related to
boundary curvature and attributes of neighboring
polygons sharing the same boundary. They recom-



mended the use of curve fitting and/or blending
function to determine boundary uncertainties.

The focus of this study is on the assessment of er-
rors as a function of boundary curvature. Specifi-
cally, an experiment has been conducted to exam-
ine the relationships between boundary curvatures
and area estimation errors, average positional er-
ror and digitizing density.

II. EXPERIMENT DESIGN AND METHODS
Map preparation

A set of eight concentric circles and a square frame
were generated using a CAD software. The radius
of each circle ranged from 0.5 cm to 7.5 cm with an
interval of 1 cm. The square frame was 16 cm by
16 cm in dimension. The line width of each circle
and the sqaure was 0.08 mm which is a popular
line thickness among cartographic products. The
circles were printed out on a sheet of standard let-
ter sized paper using a 300 dpi laser printer. Be-
cause the dot diameter of the laser printer is 0.085
mm, the actual line width may be slightly thicker
than 0.08 mm. The four corners of the square frame
were used as control points for the purpose of reg-
istration. Root mean square (RMS) registration
error is limited to less than 0.03 mm for each op-
erator before digitizing the circle map.

Map digitization

Each circle had a different curvature with the small-
est circle having the greatest curvature. The rela-
tionship between circle curvature (v) and radius (r)
is:
v=360/2nr

These circles were used as the base map for digitiz-
ing and as the reference for determining digitizing
error. Similar to the experimental design in Bolstad
et al. [15], the eight-circle map was mounted on a
SummasSketch II digitizing table located in an air-
conditioned laboratory. The resolution of the digi-
tizing table is 1000 lines/inch. Each of the ten op-
erators digitized 6 repetitions of this mounted map,
three in clockwise direction and three in counter
clockwise direction. The operators were asked to
keep an operational working speed during the digi-
tization process. This resulted in 60 digitized maps
of the original circle map within a time period of 24
hours.

Digitization error determination

Each digitized map was graphically overlaid with

the original eight-circle map. The overlay process

allows one to visually examine the spatial patterns

of digitizing error. For each circle, five types of digi-

tization errors were considered. These were:

* negative area error ¢, <0, the total digitized
area inside a circle;

® positive area error ¢} >0, the total digitized
area outside a particular circle;

* relative area error, total area error ¢,divided
by the circle area ¢, = ¢, +¢;

* average error band €, =¢&;/27ar, where

g =|e; 4;[13,;‘ ;
* positional error ¢; of each digitized point :.

The calculation of ¢; and ¢} was carried out by
summing up area sections outside and inside the
circle, respectively. Positive area section (PAS) and
negative area section (NAS) are shown in Figure 2.
PAS and NAS are obtained by comparing triangle
areas and fan areas in the following forms:
NAS = area ODE + area OEF - fan area ODF
PAS = area OAB + area OBC + area OCD

- fan area OAD
where B, C, and E are digitized points while A, D,
and F are intersection points between the digitized
lines and the original circle. The average error band
can be considered as an error zone centered around
the perimeter of a circle. The average error level on
each side of a circle can be regarded as half of the
band’s width. We chose average error band rather
than the average positional error calculated from
€; because we believed that the average positional
error would underestimate the level of error when
using linked digitized points to represent smooth
and round polygons such as circles. It is easy to see
that when multi-sided polygons with error-free ver-
tices are used to approximate circles errors still exist
along each side of the polygon and reach their maxi-
mum at the center of the each side of the polygon.

€; is determined for each individual digitized point.
The positional error for point “J” (Figure 3) is the
length difference between lines OJ and OK (i.e., JK).
The length of OK is the circle radius r. In order to
compare area errors among circles of different sizes,
each of the first three area errors was divided by its
circle area. Therefore, the area errors were con-
verted into relative area errors.
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Figure 2. Negative and positive area errors. The
polygonal area of ABCD was treated as positive area
error while the area of DEF was treated as a nega-
tive area error.

Digitizing density

For each digitized version of a circle, the digitizing
density was determined through dividing the total
number of digitized points by the perimeter of the
original circle. The density has been used for evalu-
ating the relationship between digitizing density
and curvature.

H

Figure 3. Positional error calculation. Digitized
point “J” has a positional error of JK.

Positional error distribution

For each digitized circle, a classification of the
magnitude of positional errors can be made. In this

study, the error magnitude in the range [-0.155,
0.155] was equally partitioned into 31 pieces with
a width of 0.01 cm. The frequencies of positional
errors can then be obtained by enumerating the
number of points whose errors fall into a specific
error range. For each circle, the positional error
distribution can be visually examined through a
graph generated by plotting the frequencies against
the partitioned error ranges

In summary, for each digitized circle three rela-
tive area errors, an average error band, a digitiz-
ing density and a positional error frequency distri-
bution were determined. For an original circle,
these calculations were averaged in each digitiza-
tion direction for each operator. These averaged
results were then examined with respect to circle
curvatures.

III. RESULTS AND DISCUSSION

In this section, experimental results on relation-
ships between curvature and average error band,
relative area error and digitizing density are pre-
sented. According to the curvature and radius re-
lationship, the eight radii from 0.5 cm to 7.5 cm
correspond to approximate curvatures 114.65,
38.22, 22.93, 16.38, 12.74, 10.42, 8.82, and 7.64,
respectively. If all the curvatures are divided by
the smallest curvature, 7.64, the following scaled
curvatures are obtained: 15, 5, 3, 2.14, 1.67, 1.36,
1.23 and 1. We will use the scaled curvatures along
a logarithmic scale.

For each digitizing direction and each circle, we
calculated the means and standard deviaitons for
average error band, relative area error and digitiz-
ing density. Using t-test, we found most of the dif-
ferences between the two digitizing directions were
insignificant at the 0.90 probability level. There-
fore, in the rest of the paper we will mainly present
results based on the average of the two digitizing
directions.

Curvature versus digitizing density

Digitizing densities are plotted against scaled circle
curvatures and a curve is drawn for each of the ten
operators at either clockwise or counter clockwise
digitizing direction (Figure 4). The highest digitiz-
ing density is approximately 2.5 times of the low-
est density. The general trend is that the digitiz-
ing density increases as the curvature of a circle



increases indicating that digitizing operators tend
to take more digitizing points when the curvature is
high. However, when the scaled curvatures are
small (<3) the digitizing densities do not vary a lot.
It can also be seen that there is not much difference
in digitizing densities between the two different digi-
tizing directions.
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Figure 4. Digitizing density versus curvature. Real
and dashed lines represent clockwise and counter
clockwise digitizing directions, respectively.

Curvature versus average error band

The relationship between the average error band and
the curvature is shown in Figure 5. It can be seen
that most of the average error band range from 0.08
to 0.14 mm. This means that the average digitizing
error ranges between 0.04 and 0.07 mm on each side
of the circle. This is comparable with Rhind’s find-
ing that digitizing error can not be much better than
0.075 mm [21]. There is no obvious correlation be-
tween the scaled curvature and the average error
band for any operator.

Curvature versus relative area error

The effects of curvature on real area estimates can
be observed from Figure 6. The general pattern is
that as the scaled curvature increases the relative
area error decreases. In Figure 6, a positive rela-
tive area error indicates the area of the digitized
circle is greater than that of the original circle. On
the other hand, a negative relative area error means
the area of the digitized circle is smaller than that
of the original circle. It can be seen from Figure 6
that when the curvature approaches the lower end
of the scaled curvature the error magnitude is less
than 0.5% and has less variation. In this situation,
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Figure 5. Width of average error band versus
scaled curvature.

most of the relative area errors are negative. How-
ever, toward the other end of the scaled curvature
the magnitude of relative area errors increase at
the negative side and vary widely except for the
smallest circle. For the smallest circle, the average
relative area errors scatter widely apart but within
the range between -2% to 2%. The sudden change
in relative area error trend with the smallest circle
reflects that extra care has been taken by each op-
erator.
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Figure 6. Average relative area error versus scaled
curvature.
Positional error distribution

To examine how positional errors are distributed
along a circle boundary, positional errors for each



circle and each operator were averaged. The aver-
age positional errors were classified into 20 aver-
age positional error classes starting with -0.09 cm
or poorer and end with 0.09 cm and greater with an
interval of 0.01 cm in between. Figures 7 show the
average positional error distribution along each
circle’s cross section for two operators, one with the
smallest error range (Figure 7a) and the other with
the largest error range (Figure 7b), respectively.
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Figure 7. Average positional error distribution
along circle’s cross section. (a) Results from an op-
erator with a relatively small range of digitization
errors; (b) Results from a different operator with a
relatively large range of digitizing errors.

It can be seen from Figure 7 that none of the error
distribution is normal. In addition, more than 50%
of the digitizing errors were made on the negative
side, i.e., more points were digitized on the concave

side of the circle. Digitizing errors for more than
50% of the digitized points fall within the range be-
tween -0.2 to 0.2 mm. This indicates that on each
side of the circle the average line following digitiz-
ing error were better than 0.2 mm but less accu-
rate than 0.1 mm, the best scenario suggested in
[21].

Discussion

When we defined the average error band and ex-
pected that half of its width would be greater than
the average positional error as directly calculated
from the positional digitizing errors along each
circle. Our assumption was that most of the digi-
tized points would be very close to the circle. This
assumption did not hold in this experiement. The
average positional digitizing errors are greater than
the widths of average error bands. Although the
results are controdictory to our original expectation,
we believe that the average error band is an appro-
priate error measure of the representation error
caused by linking digitized points to construct poly-
gons for representation of round-shaped phenom-
ena, particularly circular ones.

Our results indicates that higher digitizing densi-
ties neither help reduce positional digitizing errors
nor reduce average error bands and relative area
errors. These can be partly observed from Figures
4,5 and 6.

The relatively large negative area errors for circles
with large curvatures (Figure 6) indicate that the
area of an original circle tends to be reduced after
being digitized. This implies that area sizes of small
and compact objects presented on a map will be re-
duced after being digitized into a database. This
suggests that in area calculation of digitized poly-
gons it may be necessary to take shape and size
information into account to calibrate the area un-
derestimation for those small and compact polygons.

It can be inferred from Figure 7 that (1) a normal
distribution assumption is not appropriate in mod-
elling boundary positional errors; and (2) an error
model such as an epsilon band centered around a
digitized curve is not appropriate for representing
positional errors or spatial uncertainties. From the
observations in this research, it is expected that po-
sitional errors caused by digitization tend to be
larger on the concave side of a curve and the mag-
nitude is higher when the curvature is large.



IV. CONCLUSIONS

From this study, it seems that no strong relation-
ships exist between digitizing density, the average
error band, relative area error and positional er-
rors evaluated. The results suggest: (1) as the cur-
vature increases, the magnitudes of relative area
error and digitizing density also increase; (2) The
area of small sized compact polygons may be un-
derestimated from digitized maps, therefore area
estimates of small and compact polygons should be
corrected by an enlargement factor.

Positional errors caused by digitization along a cir-
cular boundary are not normally distributed. For
lines of high curvature the mean of positional er-
rors due to digitization tends to fall on the concave
side of the curve instead of coincident with the origi-
nal curve. Therefore, error models such as the ep-
silon band which centers around the digitized curve
will not be appropriate for modeling and represent-
ing digitization errors. This type of experiment is
useful for testing and training digitizing operators.
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