Reducing boundary effects in a kernel-based classifier
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Abstract. In this letter, a method is presented to reduce misclassification at the
boundaries between different types of land covers. Errors are caused by use of
spatial features extracted from pixel neighbourhoods. Simple thresholding and
region-growing techniques are used to reduce such errors. The method is included
as an extension to a frequency-based contextual classifier (FBC).

Some experiments have been carried out to evaluate both the original
classifier, FBC, and the extended version using an image acquired with a
Compact Airborne Spectrographic Imager (CASI). Experimental results show
that overall classification accuracies with the CASI image are 84-80 per cent and
89-37 per cent obtained using the FBC and the extended FBC, respectively.

1. Introduction

A major barrier to improving classification accuracies in image classification
involving spatial features extracted from local neighbourhoods (pixel windows) is
the lack of methods in reducing the misclassification that occurs at boundaries of
different classes. This type of misclassification, referred here as boundary effects, is
caused by the use of pixel neighbourhoods (e.g., Gong and Howarth 1992a, b). An
example illustrating this phenomenon is found in Eyton (1993) where a frequency-
based classification algorithm is used to classify urban land uses from digitized aerial
colour photographs.

A frequency-based contextual classifier (FBC) involves the use of frequency
tables extracted from pixel neighbourhoods in classification (Eyton 1993, Barnsley
and Barr 1993, Gong and Howarth 1992a,b, Zhang et al. 1988, Wharton 1982). In
this method the multispectral image to be classified is first transformed into a single-
channel image. This is usually achieved by classifying the image into more detailed
land-cover classes, which are related to the final classification task, using clustering
or supervised classification methods. The frequency-based classifier is then applied
to the transformed image with a pixel-window of a specific size to generate a
classification map. To speed up the transformation, gray-level vector reduction can
be used (Gong and Howarth 1992 b).

Eyton (1993) has made the first effort to reduce boundary effects in an FBC.
After a land-use map was obtained from the FBC, it was found that instead of 8
defined land-cover classes 17 classes were produced. An inspection was made to
identify the real land-use classes corresponding to ‘core regions’, from those classes
affected by the boundary effect corresponding to ‘boundary regions’. A relabelling
procedure was used to convert those boundary regions to the core regions from
which their pairwise squared generalized distances were the shortest (Eyton 1993).
Such a treatment has two drawbacks. The first is that visual inspection is subjective



and time-consuming when the boundary classes are not clearly observable. As will
be shown in section 3, the second is that converting an entire boundary class to only
one core class may be biased because each boundary class is usually composed of
two or more core classes.

In this letter, an alternate boundary-effect reduction method is presented.
Although it is developed as an extension to the specific frequency-based contextual
classifier reported in Gong and Howarth (1992b), the procedure is generally

applicable.

2. Boundary effects and their reduction
2.1. Boundary effects

The boundary effect can be illustrated using a simple example. In figure 1 there
presumably exist only two land-use classes: Classes A and B. As a pixel window
moves from the area of Class A across the boundary to the area of Class B, the
occurrence frequencies extracted from each move of the pixel window change.
Assume Class A is industrial/commercial with concrete surface dominant and Class
B is golf course with grass dominant. If a pixel window moves from Class A to Class
B, one will observe that frequencies extracted from this window change from
concrete surface dominating, to similar proportions of concrete surface and grass, to
high grass proportion and low concrete proportion, and finally to grass dominating
the pixel window. The central two concrete and grass configurations are transitional
from Class A to Class B, and depending on other classes included in the classifica-
tion scheme their frequencies may be more similar to new residential or old
residential classes. Thus, as a pixel window moves across the boundary between two
classes, four or even more land-use classes would be obtained: those transitional
classes are errors.

The level of boundary effects changes as the configuration of image resolution
and class definition changes. For a given class, the size and shape of ground
components affect the level of boundary effects. If those ground components are
important features for discriminating the specific class from others. The image
resolution needs to be sufficiently fine to allow those components to be observable
on the image. The pixel window needs to be large enough to allow those components
to be covered in one pixel window in order to guarantee that frequencies extracted
are representative to the class. Generally, boundary effects tend to be more serious
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Figure 1. An illustration of the pixel-window effect on the classification results at the
boundary of two distinct land-use classes. The two patterns between A and B are the
transitional classes which are misclassified by an FBC.
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Figure 2. An illustration of the thresholding and region-growing procedures. The threshold-
ing prevents the area along the boundary of two classes from being classified. The
region-growing algorithm will then be used to fill up the gap between classes A and B.

as image spatial resolution decreases because coarser resolution will smooth out the
boundary effects. On the other hand, boundary effects will increase as the size of
pixel window increases.

2.2. Threshold controlled classification

Since the boundary effect is a spatial problem, it should be corrected spatially. In
the FBC (Gong and Howarth, 1992b), a city-block distance d,(i,j) is calculated as a
basis for classification:

n
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where f,(i,j) is the extracted frequency of grey-level vector k from a pixel window
centered around pixel location (i,j). Cs={cy1,Cs2,--,Csn} " is the average gray-level
vector frequency for a land-use class s; C, can be obtained from supervised training
on the gray-level vector-reduced image. The pixel window size is m x m. n is the total
number of grey-level vectors.

Instead of directly comparing the shortest distance among all the land-use
classes, once d,(i,) is obtained, it is compared with a threshold f-m?(0<f<2). If
d,(i,j) < B-m?, pixel (i,j) is a candidate for land-use class s. Otherwise, pixel (i,j) is
rejected from land-use class s. If more than one land use class is a candidate, pixel
(i,j) belongs to the closest land-use class. f=2 is equivalent to applying no
thresholding whereas f=0 implies that only those pixels whose calculated occur-
rence frequencies match exactly with those of a particular class will be classified.
Therefore, by adjusting the threshold § between 0 and 2 some transitional classes
between boundaries of two different classes may remain unclassified.

2.3. Region growing by majority filtering

A simple region-growing procedure can then be applied iteratively to fill up the
gaps (unclassified pixels) between two classes (figure 2). In this procedure, only
unclassified pixels may be affected. An unclassified pixel is first located. Its eight
neighbours is then checked to see if any of these neighbours has been classified. If
the answer is no, the algorithm searches for the next unclassified pixel and does the
same neighbourhood check. If the answer is yes, the majority rule is applied to label
the unclassified pixel. The number of unclassified pixels is usually small (less than 10



per cent in an image). In addition, the region-growing procedure is computationally
simple. Therefore, it requires a very small amount of computation.

The iterating region-growing procedure is terminated according to either (1) a
user determined number of iteration or (2) when every unclassified pixel is assigned a
class. If a classification scheme is not complete for an area, there should be pixels
remaining unclassified at the end of a classification task. In this case, one should use
the number of iterations as the criterion to control the region-growing procedure. A
suggested number of iterations is m/2+ 1 (i.e., the lateral length of the pixel-window
used). This is because the maximum width of any unclassified gaps is m, and in each
iteration the algorithm fills up a two-pixel wide gap. On the other hand, if the
classification scheme is perfectly suitable for an area, the region growing could be
terminated when all pixels are classified. In this study, the second criterion is

selected.

3. Experimental design
3.1. Data and classification scheme

With a compact airborne spectrographic imager (CASI), an image was acquired
on 6 September 1991 over the west side of the City of Calgary, Alberta, Canada.
CASI is an imaging spectrometer for use on board small aircraft or in laboratories
(Anger et al. 1990). This image has a spatial resolution of approximately 7-5m by
7.5m with 512 by 512 pixels. Its 8 spectral bands cover 449-0-507-5nm,
509-3-571-6nm, 573-4-610-9 nm, 652-1-689-8 nm, 733-1-769-2nm, 771-0-807-1 nm,
809-0-850-6 nm, and 852:5-899-7 nm, respectively. A false colour composite of bands
3, 4, and 8 is shown in figure 3. No radiometric correction was made to the image
because it does not offer much help for a relatively small and flat area (Landgrebe
and Malaret 1986).

The study site includes the Glenmore Reservoir and is surrounded primarily by
residential and recreational land-use types. A land-use classification scheme of seven
classes was used (table 1). The residential area was broken into two classes: old and
new residential area, with the old residential area having a greater amount of
landscaping and vegetation. The recreational land-cover class mainly refers to the
golf course at the north side of the reservoir.

3.2. Classification

The frequency-based contextual classifier is coded as a module of PCI'’s EASI/
PACE image analysis package which can be run on any platform PCI supports.
Source code is available from the author.

Table 1. Land-use classification scheme.

Land-Use Class Code Colour
0ld Urban Residential RES!1 Red
New Urban Residential RES2 Green
Industrial/Commercial IND/COM Blue
Water WATER Yellow
Recreational REC Magenta
Grassland GRASS Cyan

Forest FOR White




Figure 3. The false colour composite of the CASI image used in this study. Bands 3, 4 and 8
have been displayed using blue, green and red colour guns.

Figure 4. The classification results obtained using the frequency-based contextual classifier
with a pixel-window size of 13 x 13.



As in conventional supervised classification, blocks of pixels were selected for
class signature generation. Test samples were selected in the same manner as in the
training sample selection. For each land-cover class, a few blocks of pixels with
certain proportion of pixels close to land-cover boundaries were selected. To avoid
over-estimation of classification accuracies, care has been taken to make sure that
test samples do not overlap with training samples.

Two factors affect the generation of gray-level vector-reduced images: the
covariance matrix used to construct the eigen space, and the specified number of
output gray-level vectors. The covariance matrix can be calculated from the entire
image, any specific part of the image, or the training samples. A suggestion is to use
training samples if the size of training samples is large enough. This is because
statistics generated from appropriately selected training samples would usually
enhance the separabilities among the land-use classes, and thus it is more likely that
a gray-level vector-reduced image with a greater discriminating power would be
generated. The number of gray-level vectors specified for the output image also
affects the discriminating power of the output image. While too few gray-level
vectors would definitely lead to loss of discriminating information, there seems to be
an upper limit for the number of gray-level vectors beyond which little classification-
accuracy improvement can be achieved. In this study training samples were used to
calculate the covariance matrix, and a gray-level vector-reduced image with 50 gray-
level vectors was generated. All the eight bands of the original CASI image were
used to produce the gray-level vector-reduced image. A detailed description on
determining possible optimal number of grey-level vectors can be found in Gong and
Howarth (1992 b).

Pixel window sizes ranging from 7 x 7 to 17 x 17 were tested by applying the FBC
and the extended FBC to the grey-level vector-reduced image. For the extended
FBC, thresholds of 0-7, 0-8, 09, 1-0, 1-1, and 1-2 were tested.

4. Results

The classification results obtained from the FBC with a pixel-window size of
13 x 13 is shown in figure 4 which represents the best overall classification results
among all the window sizes used. Figure 5 shows the intermediate classification
results obtained with the extended FBC with a pixel-window size of 13 x 13 and a
threshold value of 0-8. It can be seen from figure 5 that at most parts of the
boundaries between two land-cover classes, gaps with varying widths have been
produced. The final results of the extended FBC are shown in figure 6 that is
obtained from the intermediate results (figure 5) with the region-growing algorithm.

Tables 2 and 3 show the confusion matrices, the producer’s and user’s accuracies
(Story and Congalton 1986) for the classifications obtained with the FBC and the
extended FBC, respectively. The class entries in the first row serve as the reference
while those entries in the first column represent the classification results. The overall
classification accuracies with the FBC and the extended FBC are 84-80 per cent and
89-37 per cent, respectively. The overall accuracy improvement from the original FBC
to the extended FBC is 4-57 per cent which primarily resulted from the relatively large
accuracy improvement for the grass class. It can be seen that areas of the misclassified
class of residential 1 located at the boundary between the grass and the water classes
have been removed or partly reduced in size on figure 6 as compared with figure 4.



Figure 5. The intermediate classification results obtained using the extended [requency-
based contextual classifier with a pixel-window size of 13x 13 and a threshold of 0-8.

Figure 6. The final classification results obtained with the extended frequency-based
contextual classifier after region growing being applied.



Table 2. Confusion matrix derived from the frequency-based contextual classification with a
pixel-window size of 13 x 13.

Reference

Classified Ind/Co User’s
results Res1 Res?2 mm Water Rec Grass For %
Residential 1 1189 9 102 101 188 265 64-13
Residential 2 82 704 64 11 190 66-98
Ind/Comm 326 100-00
Water 1401 100-00
Recreational 967 100-00
Grassland 698 100-00
Forest 362 100-00
X Column 1271 713 492 1401 1079 1076 627
Producer’s % 93-55 9874 66-26 100-00 89-62 6487 5774

Overall % 84-80

5. Conclusions

Thresholding and region-growing procedures have been added to the frequency-
based contextual classifier (FBC) (Gong and Howarth 1992b). The extension
requires a relatively small amount of computation. Test has been carried out with a
Compact Airborne Spectrographic Imager (CASI) image of 8 spectral bands ranging
from the visible to near-infrared with a spatial resolution of approximately
7-5m x 7-5m. Results indicate that the FBC and its extended version both produced
overall classification accuracies of greater than 80 per cent. When used to classify

Table 3. Confusion matrix derived from the extended frequency-based contextual classifica-
tion with a pixel-window size of 13 x 13 and a threshold of 0-8.

Reference

Ind/Co User’s
Classified Res1 Res2 mm Water Rec  Grass For %
Residential 1 1189 8 132 100 26 243 70-02
Residential 2 82 705 67 15 35 77-99
Ind/Comm 293 100-00
Water 1401 100-00
Recreational 964 100-00
Grassland 1015 100-00
Forest 384 100-00
X Column 1271 713 492 1401 1079 1076 627

Producer’s % 93-55  98-88 59-55 100-00 89-34 94-33 6124
Overall % 89-37 ’




rural-urban fringe areas the FBC algorithm works very well with the airborne CASI
image. Through boundary effect reduction, it is possible to further improve
classification accuracies obtained with the FBC.

It may be possible to apply the boundary effect reduction method in other types
of contextual classification algorithms such as those employing textual features. This
may be achieved by adding a threshold component in the classifier to isolate
transitional classes and using the region-growing method to replace the isolated
classes with more appropriate classes.
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