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ABSTRACT: Experiments to evaluate the accuracies of different stages of land-cover classification are described. Four
feature groups, two training strategies, three classifiers, and three accuracy assessment methods have been analyzed.
The features used are three original SPOT HRV multispectral images, two principal component images and one edge-
density image generated from the original multispectral Band 1 image. Single-pixel training and block training are
evaluated. Classifiers used are the minimum Euclidian distance, the minimum Mahalanobis distance, and the maximum
likelihood. Pure-pixel sampling, stratified random sampling, and stratified systematic unaligned sampling are used to
generate Kappa coefficients for accuracy assessment. Results show that single-pixel training makes the largest contri-
bution to improving classification accuracies. The second largest improvement results from use of the maximum-
likelihood classifier rather than the minimum-Euclidian-distance classifier. The third largest contribution is from the
inclusion of the edge-density image. Different sampling strategies used for accuracy assessment result in significantly
different accuracy values measured by the Kappa coefficient.

INTRODUCTION

WITH THE ADVENT of higher spatial resolution remote sens-
ing data, there is increasing interest in determining the
most appropriate classification procedures for analyzing mul-
tispectral data. Not only are conventional procedures being con-
sidered, but also new algorithms based on contextual and texture
measures are being proposed. To determine to what extent new
classification algorithms are required, we need to have an in-
depth understanding of the capabilities of conventional com-
puter-assisted classification procedures. A review of the litera-
ture, however, indicates the lack of comprehensive evaluations
on which this assessment can be made. In this paper, the aim
is to evaluate some of the major procedures used at different
stages of the classification process and to determine the most
significant factors influencing the accuracies of conventional
multispectral classification for land-cover mapping.

Image classification involves two phases. First is the design
of the classification scheme. A general survey of the remote
sensing literature shows that the most popular land-classifica-
tion scheme is the one developed by Anderson et al. (1976). It
is presented in detail in the Manual of Remote Sensing (Jensen,
1983) and in many remote sensing textbooks (e.g., Lillesand
and Kiefer, 1987; Campbell, 1987). Other classification schemes
are frequently based upon it. The land-use and land-cover clas-
sification system was proposed as a standard for manual inter-
pretation by the United States Geological Survey. The rationale
of the system is that human interpreters are capable of deriving
both land-cover and land-use information by a series of induc-
tions and deductions from the spatial composition of spectral
signatures of various surface targets on an image. This can be
done at different levels of detail, depending upon the scale of
the data source being used and the level of detail required.

It is important to recognize, however, that the conventional
computer-assisted classifiers (such as the maximum-likelihood
classifier and the minimum-distance classifier) do not recognize
spatial patterns in the same way that the human interpreter
does. The classifiers perform class assignments based only on
the spectral signatures of specific pixels. They do not take into
account the locations of those pixels, nor the spectral charac-
teristics of surrounding pixels. Bearing these in mind, to make
better use of conventional computer-assisted classification
methods, one must select a classification scheme in which classes
are defined by spectral characteristics.

Previous studies have shown that a decrease in classification
accuracy is likely to occur as the spatial resolution of the data
are improved but other sensor characteristics are kept un-
changed (Clark and Bryant, 1977; Townshend and Justice, 1981;
Williams et al., 1983; Toll, 1984; Toll, 1985; Latty et al., 1985;
Shimoda and Sakata, 1988; Howarth et al., 1988; Martin et al.,
1988). In part, this can be attributed to the classification schemes
used, because the integration of different land covers and land
uses into one class will cause an increase of within-class vari-
ation. It is recognized that computer-assisted classification of
remote sensing imagery is more appropriate for identifying and
mapping land covers than it is for mapping land uses. For this
reason, the emphasis of the work presented in this paper is on
land-cover classification. In other words, the classification scheme
used in this study consists of only spectral classes which are
directly related to various land-cover types rather than land-use
types. For land-use classification, another step has to be made
to convert the land-cover types into more meaningful land-use
types.

The second phase of image classification is the implementa-
tion of the classification scheme. In a typical computer-assisted
classification, there are five major steps to be followed. These
are

® Data preprocessing, including radiometric and geometric correc-
tion, feature selection, data reduction, and noise elimination.
Training, involving either supervised or unsupervised training.
Supervised training is the most commonly-used approach.

Pixel labeling, which refers to the use of a classification algorithm
to assign each image pixel to a class, according to the training
statistics.

Postprocessing for improving the visual appearance of the image.
This includes filtering the classified results and performing geo-
metric transformations depending on the application for the data.
Accuracy assessment of the classified image compared with ground
information. As discussed by Richards (1986) and Campbell (1987),
there are many different ways to assess classification results.

In this study, a series of experiments has been undertaken to
assess the effects of performance at each of the above five steps
(except postprocessing) on classification accuracies. For each
step, several approaches among the more popular ones were
selected for evaluation. The experiments involved four different
combinations of images, two procedures for supervised train-
ing, and the application of three kinds of conventional classi-
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accuracy assessment methods,

STUDY AREA AND DATA SOURCES

The area selected for study was the Town of Markham (43
52" N; M 15" W), which is sthuated on the raral-urban fringe
of northeastern Toronto, Land cover and land wse in this area
are bypical of the miral-urban finge of many dities in North
America with agrcultural and natural land being converted bo
primarily residential, Industrial, and commercial uses, Ower a
number of years, several remote sensing studies of rurad-b
urban land conversion have been carried oul in this region
{Martin, 1975; Martin, 1988, Johnson and Howarth, 1987 Ho-
warth el al. . 198E; Martin o ol., 1988, Martin, 1%8% Gong and
Howarth, 1989, Gong and Howarth, 1980

Dlata selected for this study consisted of 5POT High Besalution
Vislble (HRV}) imapery recorded on 4 June, 1987, A 512- by 512-
pixel subscene (approximately 10 km By 10 km) of multispectral
(5] data was chosen for the analysis. Figure 1 shows part of
the study aren (b km by B km) with the built-up area at the
bower portion of the figure. In addition, 1:8,000-scale panchro-
matic aerial photographs (taken less than two months befocs
the imagery was recorded) were available te assist in land-cover
identification,

METHODOLOGY

Amnalysis was carrbed ouft using software developed on a VAX
1785 compaiber i PORIRAN 77. Image display was on a Dipix
ARIES 1T image analysis syitem.

The type and sequence of procedures used in the analysis are
autlined in Figure 2, As can be seen, at each of the major stages
in the analysis different procedures were implermented and their
results were compared. Details are presented below,



LAND-COVER CLASSIFICATION SCHEME

As discussed in the introduction, the classification scheme
selected for the analysis was designed to display all the major
land covers encountered in this area (Table 1). Four of them are
primarily located in urban areas (the residential roof, the industrial
and commercial roof, cleared land, and the lawn and tree
complex), three are unique to rural areas (crop cover, new crop
and pasture, and bare field), while the remaining five may be
encountered in either environment (pavement surface, cultivated
grass, deciduous trees, coniferous trees, and water).

FEATURE COMBINATIONS

In addition to the original three bands of the SPOT XS imagery,
two types of derived images were incorporated into the analysis.
First, a principal component analysis was undertaken. This was
done because a correlation analysis of the three SPOT Xs bands
showed that the correlation between the two visible bands (Band
1 and Band 2) is over 0.98. The first two component images,
which contain 99.6 percent of the total variance, were used in
the analysis.

The second derived image was an “edge-density” image which
was generated from the Xs Band 1 image. This was done by
first filtering the Band 1 image with a Laplacian operator to
create an edge image. A threshold was then applied to this
filtered image to obtain a binary edge image. By systematically
moving a window over the binary edge image and determining
the number of edge points, it was possible to generate the edge-
density image which provides structural information in the
classification. Further details are given in Gong and Howarth
(1990).

Using the three sets of images, four feature combinations
(Figure 2) were selected for the analysis. The rationale for these
selections is that the three XS images form the basic data set,
the two PCA images provide a reduced data set which could
speed up analysis without loss of accuracy, and the combination
of the edge-density image with the Xs image and with the PCA
image provides the incorporation of spatial structural information
into the multispectral classification.

TRAINING

Traditional supervised training involves the selection of
contiguous pixels or blocks of pixel from representative locations
across the image as training samples. This is referred to as block
training (BT) and is one of the procedures evaluated in this
paper (Figure 2). However, according to Campbell (1981) and
Labovitz and Masuoka (1984), positive spatial autocorrelation
exists among pixels which are contiguous or close together. The
block training method violates the independent sampling
requirement and therefore makes the training signatures for
each class less representative. In order to avoid this problem, a
sampling strategy using groups of single pixels was also included
in this study. The training samples for each class were selected

TaBLE 1. LAND-COVER TYPES USED IN THE CLASSIFICATION

Residential Roof

Road Surface

Industrial and Commercial Roof
Cleared Land

Lawn and Tree Complex
Cultivated Grass
Deciduous Trees
Coniferous Trees

Crop Cover

New Crops and Pasture
Bare Field

Water Surface

as individual pixels, but each pixel had to be at least several
pixels away (usually more than ten pixels) from any other selected
pixel. For both block training and single-pixel training (ST), the
sample size for each class was approximately 60. This satisfies
the requirement for a representative sample, as recommended
by Swain and Davis (1978). The selection of training pixels was
aided by reference to the 1:8,000-scale panchromatic aerial
photographs of the study area.

The two kinds of training approach were applied to the four
different feature combinations to provide eight sets of training
statistics. Transformed divergence (TD) values were calculated
according to the method described in Swain and Davis (1978).
Each TD value indicates the separability between two training
class signatures. The highest TD value is 2000 which indicates
no spectral confusion between training classes. Usually a TD
value higher than 1900 is desirable if confusion is to be avoided.
For comparison of sets of training statistics, average TD values
were calculated for each set.

CLASSIFICATION

The eight sets of training statistics were used with each of
the three classifiers. Two of them are minimum-distance
classifiers, with Euclidian distance and Mahalanobis distance as
the measures, respectively. The other one is the standard
maximum-likelihood classifier. Further details on these classifiers
are to be found in Richards (1986).

ACCURACY ASSESSMENT

Three sampling strategies were selected to test the accuracies
of the classifications. In each case, the classified result from the
image was compared with the same area on the ground by
means of the 1:8,000-scale aerial photographs.

The first assessment was carried out using “pure-pixel”
sampling (PPS). As with the single-pixel training, approximately
30 pixels for each class were selected as randomly as possible
from throughout the image. Each test pixel used in the accuracy
assessment had to have a unique ground cover that could be
readily identified by the analyst using the 1:8,000-scale aerial
photographs.

The second assessment involved using a stratified random
sampling (SRS) strategy based on the thematic classes obtained
from one of the classification results (Richards, 1986). Again, 30
test pixels for each class were obtained. Compared with the
pure-pixel sampling, however, the analyst no longer had
confidence that the correct class was identified for every test
pixel. This was because in some cases the sampling method
resulted in a mixed pixel being selected. In such cases, it is
difficult to assign a single correct land cover to the pixel.

The third group of samples was selected using the stratified
systematic unaligned sampling (SSUS) strategy (Jensen, 1983).
In this procedure, a random sample is picked from every 16 by
16 stratum on the image. Consequently, in this case a total of
1024 samples was obtained. While identifying these samples,
the analyst again encountered the problem of assigning the correct
land cover to a mixed pixel.

After the test pixels were identified, the results were input
to the computer. In this way, the classification results could be
readily compared with the test results to generate statistics such
as confusion matrices and accuracy measures. For this study,
only the Kappa coefficient (Cohen, 1960) and its variance (Fleiss
et al., 1969) were used in the comparison. This coefficient has
been recommended by Rosenfield and Fitzpatrick-Lins (1986)
and Fung and LeDrew (1988) as a suitable accuracy measure in
thematic classification for representing the whole confusion
matrix. It takes all the elements in the confusion matrix into
consideration rather than just the diagonal elements, as occurs
with the calculation of overall classification accuracy.




RESULTS AND DISCUSSION
TRAINING

Figure 3 shows the TD values obtained from applying two
different kinds of training strategies to four groups of feature
combination. In Figure 3, it can be seen, as expected, that in all
cases the single-pixel training strategy produced higher TD val-
ues than the block training approach, when the same combi-
nation of features was being compared. It is also apparent that
the two PCA images gave lower TD values than the original HRV
image, whether or not the edge-density image was combined
with the spectral bands. In both cases, the edge-density image
improved the results of the class separability. This indicates that
the inclusion of spatial information from the edge-density image
is capable of increasing the class separability. The three XS bands
combined with the edge-density image produced the highest
TD values for both single-pixel training and block training.

CLASSIFICATION AND ACCURACY ASSESSMENT

In Table 2, the classification results evaluated using Kappa
coefficients and their corresponding variances are summarized.
Figures 4, 5, and 6 graphically present the Kappa coefficients
for accuracy assessment results obtained using the minimum-
Euclidian-distance (MED), minimum-Mahalanobis-distance (MMD),
and maximum-likelihood (ML) classifiers, respectively. For each
classifier, the effects of using the three different sampling
strategies (PPS, SRS, SSUS), applied to the results of single-pixel
training and block training, are displayed.

From Figure 4, it can be seen that, for all three accuracy-
evaluation methods, single-pixel training resulted in higher
classification accuracies than block training. Comparing the
accuracy results for the two PCA bands with the original three
Xs bands, in all cases a small improvement of accuracy using
the three XS bands is observed, except for block training and
stratified systematic unaligned sampling. Both pure-pixel
sampling and stratified systematic unaligned sampling show
significant accuracy improvements when the edge-density image
is included as one of the features in the classification, but this
is not so apparent with stratified random sampling.

In both Figure 5, where the MMD classifier has been used,
and Figure 6 based on the ML classifier, the results for single-
pixel training again show higher accuracies than block training
in all the combinations presented. Contrary to the results from
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FiG. 3. Average transformed divergence (D) values
for the different feature combinations used in this study.
In all cases single-pixel training produces higher TD
values than block training. The feature combinations
1,2, 3, and 4 and the abbreviations in the diagram
are identified in Figure 2 and explained in the text.

the MED classifier, however, several cases occur where the two
PCA bands show better results than the three XS bands, but
there are exceptions. Use of the edge-density image improves
results for pure-pixel sampling and stratified random unaligned
sampling, but poorer results are observed with stratified random
sampling based on block training.

From the evaluation, it is important to determine what
contributes most to improved classification accuracy from among
the feature combinations, the training procedures, and the
classification algorithms. To determine this, the significance test
proposed by Cohen (1960) for comparing two classification results
was adopted. With this method, the difference between two
Kappa coefficients resulting from two classifications is first
obtained. The square-root of the sum of the variances between
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Fia. 4. The minimum-Euclidian-distance classification results ob-
tained with the use of two training approaches applied to the four
feature combinations and evaluated by the three accuracy-testing
methods. Note that the highest accuracies are attained using single-
pixel training applied to feature combinations including the edge-
density image. The feature combinations 1, 2, 3, and 4 and the
abbreviations in the diagram are identified in Figure 2 and explained
in the text.
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Fia. 5. The minimum-Mahalanobis-distance classification results
obtained with the use of two training approaches applied to the
four feature combinations and evaluated by the three accuracy-
testing methods. Contrary to the results of the minimum-Euclidian-
distance classifier, shown in Figure 4, there are several cases
where the two PCA bands show better results than the xs bands.
The feature combinations 1, 2, 3, and 4 and the abbreviations in
the diagram are identified in Figure 2 and explained in the text.



TABLE 2. LAND-COVER CLASSIFICATION RESULTS MEASURED BY KAPPA COEFFICIENTS (KC) AND THEIR VARIANCE (VAR)

Training PPS SRS SSUS
Mode Classifier Feature KC VAR KC VAR KC VAR
BT MED 1 0.475 0.00075 0.382 0.00082 0.299 0.00027
2 0.518 0.00075 0.427 0.00082 0.304 0.00027
3 0.629 0.00069 0.470 0.00083 0.424 0.00029
4 0.638 0.00069 0.502 0.00081 0.405 0.00028
BT MMD 1 0.561 0.00073 0.473 0.00078 0.267 0.00023
2 0.649 0.00067 0.547 0.00078 0.334 0.00028
3 0.645 0.00067 0.452 0.00079 0.345 0.00026
4 0.669 0.00065 0.491 0.00078 0.362 0.00027
BT ML 1 0.604 0.00071 0.562 0.00079 0.335 0.00028
2 0.663 0.00066 0.619 0.00075 0.399 0.00029
3 0.683 0.00064 0.551 0.00079 0.403 0.00028
4 0.689 0.00063 0.550 0.00079 0.400 0.00029
ST MED 1 0.646 0.00068 0.486 0.00079 0.321 0.00029
2 0.689 0.00063 0.534 0.00078 0.396 0.00030
3 0.770 0.00052 0.550 0.00080 0.477 0.00030
4 0.778 0.00050 0.572 0.00078 0.491 0.00030
ST MMD 1 0.693 0.00063 0.607 0.00077 0.414 0.00031
2 0.738 0.00057 0.601 0.00077 0.445 0.00030
3 0.830 0.00041 0.656 0.00072 0.485 0.00030
4 0.830 0.00041 0.622 0.00075 0.508 0.00030
ST ML 1 0.744 0.00056 0.625 0.00074 0.392 0.00031
2 0.747 0.00056 0.632 0.00074 0.471 0.00031
3 0.845 0.00038 0.669 0.00070 0.499 0.00030
4 0.842 0.00039 0.644 0.00073 0.526 0.00030
100 ® The minimum-Mahalanobis-distance classifier (MMD) and the
minimum-Euclidian-distance classifier (MED).

® The maximum-likelihood (ML) classifier and the minimum-

80 Mahalanobis-distance classifier (MMD).
5 W STiPPS ® The maximum-likelihood (ML) classifier and the minimum-Euclidian-

5 distance classifier (MED).
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Fia. 6. The maximum-likelihood classification results obtained with
the use of two training approaches applied to the four feature com-
binations and evaluated by the three accuracy-testing methods.
The pattern of results is very similar to that shown in Figure 5. The
feature combinations 1, 2, 3, and 4 and the abbreviations in the
diagram are identified in Figure 2 and explained in the text.

the two classifications is then calculated. A Z-value can be
determined by dividing the difference by the square-root of the
sum of the variances. A Z-value above 1.96 indicates that the
two classification results are significantly different at the 95
percent confidence level. In this study, the following strategies
for each step in Figure 2 have been compared:

® Single-pixel training (ST) and block training (BT).

® The three-band Xs image (F2) and the two-band PCA image (F1).

® The two-band PCA image plus the edge-density image (F3) and
the three-band Xs image (F2).
The three-band xs image plus the edge-density image (F4) and the
two-band PCA image plus the edge-density image (F3).
Averages for F3 and F4 and averages for F1 and F2 to compare
images with and without the edge-density image.

classification accuracy by selecting the best strategy within each
step.

As can be seen from Table 3, the largest average Kappa
coefficient difference of 0.1124 and the highest Z-value of 3.437
are derived from the results for the two types of training strategy.
The second largest average difference of 0.080 with a Z-value
of 2.433 is between the ML and the MED. Inclusions of the edge-

TABLE 3. AVERAGE DIFFERENCES OF KAPPA COEFFICIENTS, AVERAGE
SQUARE-ROOTS OF THEIR CORRESPONDING SUM OF VARIANCES, AND Z-

VALUES
Average
Difference Square-Root Z-Value
ST-BT 0.1124 0.0327 3.437
F2-F1 0.0461 0.0327 1.410
F3-F2 0.0370 0.0326 1.135
F4-F3 0.0077 0.0326 0.236
(F4 + F3 — F2 — F1)/2 0.0640 0.0326 1.963
MMD-MED 0.0434 0.0329 1.319
ML-MMD 0.0363 0.0323 1.124
ML-MED 0.0798 0.0328 2.433

Underlining indicates that the difference is significant at the 95 per-
cent confidence level.



density image produce the third largest difference (0.064) with
the third highest Z-value. The first three differences all pass the
significance test at the 95 percent confidence level.

The fourth largest difference (0.046) results from comparing
the two PCA bands with the original XS bands. Although the
two PCA bands theoretically should contain 99.6 percent of the
variance of the original three Xs bands, there is almost a 5 percent
accuracy difference between them. The reason for this is not
directly apparent to the authors, but two possible explanations
are suggested. First, the principal component analysis is based
on the assumption that the data set has a unimodal normal
distribution. However, this is not the case for the XS data used
in this study. Such a violation may alter the elements within
the variance-covariance matrix employed to conduct the PCA .
The resultant first two PCA images may therefore contain less
information than expected. The second explanation is that it
may partially result from the quantization made after the PCA
transformation. In turn, this could reduce the information content
in the PCA image. In other words, the quantized PCA bands
contain less feature variance than the expected 99.6 percent of
the total feature variance calculated from the original three bands.

SUMMARY AND CONCLUSIONS

In this study, a comparison of the accuracies of different clas-
sification procedures for mapping land cover from SPOT HRV
data has been presented. Four different combinations of fea-
tures derived from the SPOT data were used for the analysis.
Two types of training strategies were applied to each of the
images to generate training statistics for three different classi-
fiers. The results of the classifications were compared by means
of three accuracy-assessment procedures.

It is concluded that:

® In all cases, the single-pixel training led to more accurate results
than block training at the 95 percent confidence level. Thus, it
would appear that single-pixel training is a superior training strat-
egy. However, the analyst requires more time to identify each
pixel individually compared with picking out blocks of similar
pixels. It should also be noted that the different training strategies
can result in very different accuracy estimates for the final clas-
sification. Similar results have been reported by Hixson et al. (1980)
and by Chuvieco and Congalton (1988).

Different sampling strategies are likely to produce very different
accuracy results. In particular, it should be noted that the two
random sampling strategies may cause difficulties for the image
analyst when the land cover for a mixed pixel is being identified.
The relatively large classification accuracy difference between the
three Xs bands and the two PCA bands was not anticipated. It is
thought that this might result from the violation of the PCA as-
sumption or the quantization of the PCA bands after the transfor-
mation has been performed, but further study is required to
determine the reasons.

The addition of spatial information to the classification statistics
by using an edge-density image as an additional image band in-
creases the accuracy of classification. It seems worthwhile to de-
velop simple spatial information extraction methods and test them
with higher spatial resolution data such as the SPOT HRV data.

The results of this study indicate that there is a need to es-
tablish standardized procedures for measuring and comparing
accuracies at all stages of the land classification process. Until
a standardized approach becomes available, any accuracy as-
sessment should clearly specify the procedures used.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of SPOT
Image Corporation of France and the Canada Centre for Remote
Sensing in supplying the SPOT data used in this study as part
of the Programme d’Evaluation Préliminaire SPOT (PEPS), Proj-
ect No. 229. This research is funded by a Centre of Excellence
grant from the Province of Ontario to the Institute for Space

and Terrestrial Science and NSERC Operating Grant A0766
awarded to P.J. Howarth. Mr. Gong's studies are supported by
the International Development Research Centre (IDRC) of Ot-
tawa. The authors would like to thank Dr. Larry Martin for his
helpful discussions on land-cover classification. Also the re-
viewers’ comments are much appreciated.

REFERENCES

Anderson, J. R., E. E. Hardy, ]J. T. Roach, and R. E. Witmer, 1976. A
Land Use and Land Cover Classification System for Use with Remote
Sensor Data. Professional Paper 964, United States Geological Sur-
vey, Washington, D.C.

Campbell J. B., 1981. Spatial correlation effects upon accuracy of su-
pervised classification of land cover. Photogrammetric Engineering
and Remote Sensing, Vol. 47, No. 3, pp. 355-363.

, 1987. Introduction to Remote Sensing. The Guildford Press, New
York, 551 p.

Chuvieco, E., and R. G. Congalton, 1988. Using clustering analysis to
improve the selection of training statistics in classifying remotely
sensed data. Photogrammetric Engineering and Remote Sensing, Vol.
54, No. 9, pp. 1275-1281.

Clark, J., and N. A. Bryant, 1977. Landsat-D Thematic Mapper simu-
lation using aircraft multispectral scanner data. Proceedings of the
11th International Symposium on Remote Sensing of Environment, Ann
Arbor, Michigan, pp. 483-491.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educa-
tional and Psychological Measurement, Vol. 20, No. 1, pp. 37-46.
Fleiss, J. L., J. Cohen, and B. S. Everitt, 1969. Large sample standard
errors of Kappa and weighted Kappa, Psychological Bulletin, Vol. 72,

No. 5, pp. 323-327.

Fung, T., and E. LeDrew, 1988. The determination of optimal threshold
levels for change detection using various accuracy indices. Photo-
grammetric Engineering and Remote Sensing, Vol. 54, No. 10, pp. 1449-
1454.

Gong, P., and P. J. Howarth, 1989. A modified probabilistic relaxation
approach for land-cover classification. IGARSS'89/12th Canadian
Symposium on Remote Sensing, Vancouver, British Columbia, pp.
1621-1624.

, 1990. The use of structural information for improving land-
cover classification accuracies at the rural-urban fringe. Photogram-
metric Engineering and Remote Sensing, (in press).

Hixson, M., D. Scholz, N. Fuhs, and T. Akiyama, 1980. Evaluation of
several schemes for classification of remotely sensed data. Photo-
grammetric Engineering and Remote Sensing, Vol. 46, No. 12, pp. 1547-
1553.

Howarth, P. J., L. R. G. Martin, G. H. Holder, D. D. Johnson, and J.
Wang, 1988. SPOT imagery for detecting residential expansion on
the rural-urban fringe of Toronto, Canada. SPOT-1 Image Utiliza-
tion, Assessment, Results, Cepadues-Editions, Toulouse, France, pp.
491-498.

Jensen, J. R. (editor), 1983. Urban/Suburban Land Use Analysis. Manual
of Remote Sensing, Second Edition, R.N. Colwell (editor-in-chief),
American Society of Photogrammetry, Falls Church, Virginia, pp.
1571-1666.

Johnson, D. D., and P. J. Howarth, 1987. The effects of spatial resolu-
tion on land cover/use theme extraction from airborne digital data.
Canadian Journal of Remote Sensing, Vol. 13, No. 2, pp. 68-74.

Labovitz, M. L., and E. J. Masuoka, 1984. The influence of autocorre-
lation in signature extraction—an example from a geobotanical in-
vestigation of Cotter Basin, Montana. International Journal of Remote
Sensing, Vol. 5, No. 2, pp. 315-332.

Latty R. S., R. Nelson, B. Markham, D. Williams, D. Toll, and J. Irons,
1985. Performance comparisons between information extraction
techniques using variable spatial resolution data, Photogrammetric
Engineering and Remote Sensing, Vol. 51, No. 9, pp. 1159-1170.

Lillesand, T. M., and R. W. Kiefer, 1987. Remote Sensing and Image Inter-
pretation, Second Edition. John Wiley & Sons, New York, 721 p.

Martin, L. R. G., 1975. Land Use Dynamics on the Toronto Urban Fringe.



Lands Directorate Map Folio No. 3, Environment Canada, Ottawa,

47 p.

, 1986. Change detection in the urban fringe employing Landsat

satellite imagery. Plan Canada, Vol. 26, No. 7, pp. 182-190.

, 1989. Accuracy assessment of Landsat-based visual change de-
tection methods applied to the rural-urban fringe. Photogrammetric
Engineering and Remote Sensing, Vol. 55, No. 2, pp. 209-215.

Martin, L. R. G., P. ]J. Howarth, and G. Holder, 1988. Multispectral
classification of land use at the rural-urban fringe using SPOT data.
Canadian Journal of Remote Sensing, Vol. 14, No. 2, pp. 72-79.

Richards, J. A., 1986. Remote Sensing Digital Image Analysis: An Introduc-
tion. Springer-Verlag, Berlin. 281 p.

Rosenfield, G. H., and K. Fitzpatrick-Lins, 1986. A coefficient of agree-
ment as a measure of thematic classification accuracy. Photogram-
metric Engineering and Remote Sensing, Vol. 52, No. 2, pp. 223-227.

Shimoda, H., and T. Sakata, 1988. Accuracy of landuse classification
for SPOT image data. SPOT-1 Image Utilization, Assessment, Results,
Cepadues-Editions, Toulouse, France, pp. 631-636.

Swain P. H., and S. M. Davis (Eds.), 1978. Remote Sensing: The Quan-
titative Approach. McGraw-Hill, New York. 395 p.

Toll, D. L., 1984. An evaluation of simulated TM data and Landsat MSS
data for determining suburban and regional land use and land cover.
Photogrammetric Engineering and Remote Sensing, Vol. 50, No. 12, pp.
1713-1724.

, 1985. Effect of Landsat TM sensor parameters on land cover
classification. Remote Sensing of Environment, Vol. 17, No. 2, pp.
129-140.

Townshend, J., and C. Justice, 1981. Information extraction from re-
motely sensed data, a user view. International Journal of Remote Sens-
ing, Vol. 2, No. 4, pp. 313-329.

Williams, D. L., J. R. Irons, B. L. Markham, R. F. Nelson, and D. L.
Toll, 1983. Impact of TM sensor characteristics on classification ac-
curacy. Proceedings of IGARSS’83, San Francisco, California, pp. PS1
5.1-5.9.

(Received 14 April 1989; revised and accepted 27 September 1989)

CANADA CENTRE FOR GIS IN EDUCATION

The Canada Centre for GIS in Education announces the availability of a wide range of teaching materials for
professionals, instructors and researchers involved in GIS education and training,

Program offerings include the following:
e GIS Software
e Instructional Documentation
e Curricula (compatible with NCGIA

o Geographic Data Sets
o Seminars

e Support Programs

curriculum guidelines)

The Centre has a mandate to facilitate the development and dissemination of materials for instruction in GIS
and its practical applications for both developed and developing countries. The Centre provides affordable
access to professional GIS software and course materials for a variety of disciplines and curriculum levels.

For additional information, instructors, curriculum developers, and post-graduate researchers should write to:

The Director

The Canada Centre for GIS in Education
c/o Faculty of Education

Queen’s University

Kingston, Ontario

Canada K7L 3N6




