Conifer Species Recognition: An Exploratory
Analysis of In Situ Hyperspectral Data

Peng Gong,* Ruiliang Pu,® and Bin Yu'

In situ hyperspectral data measured above sunlit and
shaded sides of canopies using a high spectral resolution
radiometer were analyzed for identification of six conifer
tree species. An artificial newral network algorithm was
assessed for the identification purpose. Linear discrimi-
nant analysis was compared with the neural network al-
gorithm. The hyperspectral data were further processed
to smoothed reflectances and first derivative spectra and
were separately used in tree species identification. Tree
species recognition with data collected from six study
sites was tested in seven experiments. The average accu-
racy of species recognition was obtained at every site.
The overall performance of the neural network algorithm
was better than that of linear discriminant analysis for
species recognition when the same number of training
samples and test samples were used. The discriminant
analysis produced better accuracy than neural network
at one site where many samples (10) were taken from six
individual trees. Use of the average spectra of all samples
for a particular tree species in training may not result in
higher accuracy than use of individual spectral samples
in training. Use of sunlit samples alone resulted in an
overall accuracy of greater than 91%. The effects of site
background including illuminating conditions on tree
species spectra were larg‘a Neural .networks are sensitive
to subtle spectral details and can be trained to separate
samples from the same species at different sites. Our ex-
periments. indicate that the discriminating power of visi-
ble bands is stronger than that of near-infrared bands.
Higher recognition accuracies can be obtained in the blue
to. green or the red-edge spectral region as compared
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with four other spectral regions. A smaller set of selected
bands can generate more accurate identification than all
spectral bands. ©Elsevier Science Inc., 1997

INTRODUCTION

In natural resource management, environmental protec-
tion, biodiversitv and wildlife studies, correct recognition
of forest species is important. Conventionally reliable
methods for tree species recognition depend mainly on
costly, time-consuming, and labor-intensive inventory in
the field or on interpretation of large-scale aerial photo-
graphs. The use of these methods is frequently limited
by cost and time and is not applicable to large areas.
Digital remote sensing has been used to identify forest
species of large areas, but two problems are encoun-
tered: Different tree species often have similar spectral
characteristics partly due to the lack of high spectral res-
olution and large number of spectral bands; and the
same tree species may have distinct spectrzll properties
due to illumination conditions on which optical remote
sensing is based.

Hyperspectral data in hundreds of spectral bands
with very high spectral resolution have been applied to
leaf area index estimation (Gong et al., 1995; 1992), bio-
chemistry constituents (Curran, 1989; Card et al., 1988;
Johnson et al., 1994; Matson et al., 1994), and decompo-
sition of spectrally mixed pixels (Gong et al., 1994;
Boardman, 1989). Although such data allow subtle spec-
tral changes of various targets to be detected (Goetz et
al., 1985) and are available for many applications, includ-
ing the study of the spectral properties of forest cano-
pies, few studies have been undertaken to identifv tree
species.

Many researchers have studied the spectral proper-
ties of trees. Most of those studies are based on spectra
measured either from tree leaves only (e.g., Miller et al.,
1991; Daughtry et al., 1989) or from selected compo-



nents of forest stands such as branches of needles, shoot
stacks, barks, and litter and soil (e.g., Goward et al,
1994; Williams et al., 1991). Although this “decomposed”
approach to spectral analysis has been valuable in under-
standing the biophysical and physiological characteristics
of trees and quantifying the biochemical constituents of
tree foliage, what has been learned from forest landscape
components cannot be linearly scaled up to understand-
ing the spectral characteristics of a forest canopy/stand
as recorded in remotely sensed data. In order to charac-
terize the spectral properties of forest canopies, a tre-
mendous amount of effort to develop nonlinear models
that are often complicated (e.g., Liang and Strahler,
1993; Li and Strahler, 1986) is required.

Differently from the “decomposed” approach to
spectral analysis and radiative transfer modeling that in-
tegrate spectral properties of landscape components into
the characterization of spectral properties of forest cano-
pies, we undertook an explorative study on the potential
of hyperspectral data, measured directly from above for-
est canopies in the field, for forest species recognition.
We were motivated by 1) the belief that the rich amount
of spectral information contained in hyperspectral data
should improve the level at discrimination of forest spe-
cies and 2) the desire for a relatively simple but robust
method that can handle the large number of spectral
bands in hyperspectral data while tolerant of spectral
noise. In a preliminary study, a relatively small number
of hyvperspectra was collected from six conifer trees for
species recognition. Results indicate that, with the spec-
tral derivative technique and an artificial neural network
algorithm, we can differentiate those conifer species at
greater than 90% accuracies. This led us to conduct
more experiments on species recognition using hyper-
spectral data collected in the field from more tree sam-
ples in California.

The objectives of this study are to 1) test a hypothe-
sis that important conifer species in Northern California
can be successfully recognized with in situ hyperspectral
data, 2) further assess the capability of a neural network
algorithm for conifer species identification, and 3) de-
velop a band selection method. In this article, we report
the procedures and preliminary results obtained to
achieve the first two objectives.

STUDY AREA AND DATA COLLECTION
Study Area

Hyvperspectral measurements were taken at the Blodgett
Forest Research Station of the University of California,
Berkeley, located in the American River watershed on
the western slope of the central Sierra Nevada, El Do-
rado County, California. The elevation ranges from 1219
m to 1463 m and the slope ranges from 0% to 30%. The
soils on the study area were formed from volcanic and

intrusive igneous rocks. The area is classified as Site
Quality I timberland. The climate is characterized by
dry, warm summers and mild, wet winters. Blodgett For-
est receives an average of 1650 mm of precipitation per
vear. The vegetation consists of the normal associates of
the Sierra mixed conifer forest type, the major tree spe-
cies include five conifers—sugar pine (SP, Pinus lam-
bertiana), ponderosa pine (PP, Pinus ponderosa), white
fir (WF, Abies concolor), Douglas fir (DF, Pseudotsuga
menziesii), and incense cedar (IC, Calocedrus decur-
rens)—and one hardwood—California black oak (Quer-
cus kelloggii). In addition, a species native to the Sierra
Nevada but not found in the Blodgett Forest, giant se-
quoia (GS, Sequoiadendron giganteum), has been
planted in selected sites since the early 1900s. Major
shrub species include manzanita, deerbrush, white thorn,
and bear clover.

Spectral Reflectance Collection

A high spectral resolution spectrometer, PSD1000 (dual
spectrometer; ANCAL, 1995) was used to take measure-
ments in the field. The spectrometer is designed for use
with a portable computer. It may be used for precise
measurements in various spectral ranges from 210 nm
through 1050 nm. To provide full spectral coverage,
PSD1000 has two spectrometers, master and slave. The
master spectrometer covers the shorter spectral wave-
length range (shorter than 700 nm) and the slave covers
the longer spectral range (longer than 500 nm). The
number of bands covered by the PSD1000 is more than
1500 with an average band width of 0.5 nm. The spectral
resolution is approximately 2.6 nm. It is controlled by a
portable computer allowing collected spectra to be dis-
played instantly or to be stored on storage media. The
field of view of the spectrometer is approximately 22°.
Three types of spectral measurements can be made: dark
current (the response of the system with no light being
exposed to detectors), white reference (spectra from a
standard white panel with close to perfect diffusion), and
sample (spectra obtained from the target of interest). To
avoid saturation or shortage, an integration time for col-
lecting photons is selected based on the illumination con-
dition by adjusting the master/slave sampling frequency.
A reflectance spectrum can be generated through divid-
ing the sample radiance by the radiance from the stan-
dard white reference under the same light condition.
At Blodgett Forest, six sites—grazed (Site 1). hand-
weeded (Site 2), hand-cut (Site 3), vallev (Site 4), flat
area (Site 3), and Sequoia (Site 6)—were chosen for hyv-
perspectral measurements at ditferent times in multiple
vears for long term monitoring of selected tree species.
Canopy sizes at Sites 1-3 are smaller than those at Sites
4-6. Site 6 has the largest canopies with a dry soil back-
ground free of litter and understory vegetation. Sites 4
and 3 have more litter and understory vegetation sur-



Table 1. Hyperspectral Data Collected at Six Sites

DF GS IC PP SpP WF Sum
Sitet N, N, N, N, N, N, N, N, N, N, N N, VYN, N,
1 10 20 10 20 10 20 10 20 10 20 10 20 60 120
2 6 12 9 18 2 4 4 8 7 14 4 8 3 64
3 5 10 4 8 3 10 5 10 5 10 5 10 29 38
4 1 10 1 10 1 10 1 10 1 10 1 10 6 60
3 3 6 3 6 3 6 3 6 3 6 3 6 18 36
6 5 10 3 10 5 10 5 10 3 10 5 10 30 60
Sum 30 68 32 72 26 60 28 64 31 70 28 64 175 398

“ N,=number of trees

rounding the tree canopies than all the other sites. The
measurements used in this research are our first hyper-
spectral measurements over those sites. A total of 398
reflectance spectra were measured with the spectrometer
between 20 and 21 October 1993, from six conifer spe-
cies including DF, GS, IC, PP, SP, and WF. For mea-
surement convenience, we selected young conifer trees
(4-T years old) at a height of shorter than 4 m. Measure-
ments were taken at heights lower than 1.5 m. To ana-
lyze the effect of different light conditions, measure-
ments were successively taken both from shaded and
sunlit portions of tree canopies while holding the spec-
trometer sensor head 15-20 cm from directly above
those canopies. During the period of measurement, the
air temperature near the target measured varied from
25°C to 30°C with dry and mild wind conditions. The sky
condition on 20 October varied from clear to scattered
thin cloud cover. Dark current and white reference were
measured every 5-10 min as necessarv to minimize the
effect of possible difference in illumination. On 21 Octo-
ber, the sky was clear. The measurement time on 20 Oc-
tober at Sites 1, 2, and 3 was from 12:30 to 14:00 local
time and on 21 October from 12:30 to 14:00 for Sites 4,

5, and 6. Table 1 lists the numbers of spectral measure-
ments for the six conifer species at the six different sites.
We measured the spectral reflectances above some pure
soil backgrounds at several sites. Since the soil tvpe
across all the sites is essentially the same, the results are
as we expected, that their spectral differences are within
2%, a better than 10% relative error across all the sites.

METHODS

Use of an Artificial Neural Network Algorithm

A feed-forward neural network (NN) algorithm was used
for species recognition. The network training mechanism
is the error-propagation algorithm (Rumelhart et al.,
1986). A neural network program developed by Pao
(1989) has been adapted and used in this study. The net-
work requires training using a certain number ot samples
of known species. After training is done, based on a min-
imum error criterion or an optimal test accuracy, the

; N;=number of samples.

network can be used to classify new samples to tree spe-
cies as its outputs. The NN algorithm has been explored
by many researchers for classification using both remote
sensing data and other kinds of data (e.g., Gong, 1996;
Gong et al., 1996; McCormack et al., 1993; Yin et al.,
1991; Hepner et al., 1990).

Discriminant Analysis

A linear discriminant analysis (DA) was tested for conifer
species identification to compare with the NN. The pro-
cedure DISCRIM in the SAS package (SAS Institute,
1985) was used.

Accuracy Assessment

Of all the hyperspectral data collected, a small portion
of samples was used to train the NN and/or the DA
while the remaining portion was used to test the classifi-
ers’ discriminating power. We have generated a confu-
sion matrix for each classification. However, there is no
consistency among the patterns of misclassification when
one confusion matrix is compared with another. Due to
the explorative nature of this study, we shall only report
the percentage correct recognition defined by the overall
average accuracy (OAA):

n
OAA=-%100%,
n,
where n, is the number of correctly classified samples
and n, is the total number of test samples used.

Experiments

A total of 398 original reflectance spectra were first
smoothed with a five-channel. Fast Fourier Transform
smoothing routine (ANCAL, 1995). The reflectance val-
ues at shorter than 320 nm and longer than 930 nm
wavelength regions were eliminated due to the weak re-
sponse of the detectors for all study sites. To reduce the
data volume, we merged and calculated the average
value for every five consecutive bands instead of using
the raw data. As a result, the smoothed reflectance spec-
trum has 226 bands. Spectral derivative was then taken
from smoothed reflectance data. As illustrated in Gong
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Figure 2. Reflectance curves collected from Doug-
las fir trees at six different study sites.

each tree species for training and all sunlit samples for
testing.

Experiment 5: The Effects of Different Site Backgrounds
To test the effects of different site background on tree
species identification, the six sites were divided into two
groups based on their measurement dates. The first
group (Group 1) includes Sites 1, 2, and 3, where the
measurements were made on 20 October 1993, with
scattered thin cloud cover for most of the time. The sec-
ond group (Group 2) consists of Sites 4, 3, and 6, where
the measurements were made on 21 October 1995 under
a clear sky. Figure 2 shows the differences of reflectance
spectra from the same species, Douglas fir, among the
six different sites. For each group, the same tree species
at different sites were treated as a different class. For
example, species DF in Group 1 is divided into DF1 (for
Site 1), DF2 (for Site 2) and DF3 (for Site 3), to evalu-
ate the potential of identifying the same species at differ-
ent sites. If the different classes of a tree species at dif-
ferent sites can be clearly separated, then the back-
ground spectra at ditferent sites should be considerably
different. Otherwise, their effects on tree species identi-
fication are weak. In each group, the samples belonging
to the same tree species were randomly divided into two
groups of approximately equal number of samples, one
half for training and the other for testing.

Experiment 6: Eraluating the Discriminating Power of

Different Wavelength Regions

To assess the discriminating power of different wave-
length regions, we divided all the spectra into eight spec-
tral ranges: blue-green (BG) covering 462-305 nm, green
peak (GP) covering 536-580 nm, yellow edge (YE) cov-
ering 590-641 nm, red well (RW) covering 652-692 nm,
red edge (RE) covering 700-744 nm, Visible covering

333-700 nm, and NIR1 covering 700-923 nm, and NIR2
covering 784-826 nm. In addition, a six-band subset se-
lected from the center of spectral regions of BG, GP,
YE, RW, RE, and NIR2 was used for species identifi-
cation.

Experiment 7: Evaluating Reduced Number of Bands

for Species Identification

Four schemes were designed to test reduced number of

bands for species recognition. These are:

1. Average of smoothed bands (ASB): An ASB band
was calculated by averaging every five consecutive
smoothed bands resulting in 44 ASB bands from
the original smoothed reflectance Bands 1-220.
Average of the first derivative bands (ADB): An
ADB band was obtained by averaging every five
consecutive first-order derivative bands, resulting
in 44 ADB bands from the first derivative Bands
1-220.

3. Selection from smoothed bands by a fuzzy cluster-
ing algorithm (SSB): A fuzzy clustering algorithm
(FCA) was introduced by Pu and Gong (1996) for
hyperspectral band selection. An extensive assess-
ment of FCA will be reported in another article.
With this algorithm, 44 bands were selected from
the smoothed bands (1-220).

4. Selection from first derivative bands with FCA
(SDB): 44 bands were selected from first-order
derivative bands (1-220).

o

RESULT ANALYSIS AND DISCUSSION

Spectral properties of forest canopies as observed with
remote sensors are dependent of illuminating and atmo-
spheric conditions (e.g., amount of shadow or shade),
forest species, forest understory conditions (understory
vegetation, soil, litter, etc.), seasonality, solar angle, view-
ing geometry, and the spatial resolution of the sensors.
Change in any one of these variables could lead to
changes in sensor responses to forest canopies and hence
spectral indices derived from those sensor responses
(Leblon et al., 1996; van Leeuwen and Huete, 1996; Qi
et al., 1995; Huete et al., 1985). From the description on
our spectral measurements, one can see that the effect of
illumination and atmospheric condition is limited due to
our frequent update of the measurements of the white
reference and sensor dark currents. The viewing angle
has been limited to nadir. The variation of solar elevation
is limited to a small range as the time period during
spectral measurements has been limited to around noon.
The field of view has been limited to taking measure-
ment only from canopies. The soil background was ap-
proximately the same. The season was late fall when the
trees stopped growing. Therefore, measured spectral
properties in this study represent primarily the character-
istics of forest species (amount of leaves, leaf age. leaf-
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Figure 3. Comparison of test results from various combina-
tions ot learning rate (#) and momentum coefficient (a) for
training the neural networks. Only one single hidden laver
with 50 nodes and spectral derivative data with 222 bands
were used. Forty training samples were randomly selected
from spectral measurements at Site 1, and the remaining S0
samples were used as test samples. Numbers in parentheses
are numbers of network training iterations.

branch ratio, leaf distribution, etc.) and the background/
hadow conditions. One would hope that the understory
conditions remain the same, but in reality this is hard to
find except the size of an area is small. Sometimes, the
background conditions may not be a concern if the tree
canopies are so large and dense that what has been mea-
sured is mainly from the canopies.

In this study, we have to deal with spectral measure-
ments taken from forest canopies with varving conditions
of background. A forest species characterized by in situ
spectral measurements of tree canopies reflects the inte-
grated effect of foliar chemistry, leaf shape and size, leaf
amount, leaf age. and canopy structure. For the purpose
of this research, if the spectral differences caused by
such integrated effect are detectable, then hyperspectral
remote sensing can be used to differentiate forest species.
Therefore, we will limit our analysis to the integrated
level. Further analysis requires a significant amount of
knowledge of foliar chemistry and forest physiology that is
beyond the scope of this paper.

Experiment 1

In order to test the effects of various # and a on the NN
performance, we used first derivative data from Site 1
and randomly selected 40 samples for training and used
the remaining SO samples for testing. The NN had 350
odes in its hidden laver. # and a values were varied
[ig. 3). The best identification accuracy of 91% was ob-
tained when #=0.2 or 0.3, ¢=0.7, and the number of
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Figure 4. Neural network test results from
various numbers of nodes in single hidden
laver networks. #=0.3, @=0.7, and the
inputs are 222 bands of derivative spectra.
Data used were the same as in Figure 3.
Numbers in parentheses are numbers of
network training iterations.

nodes in the hidden layer was 30. A series of test results
from six combinations of various (7, a) values(n varied
from 0.1 to 0.7, while a from 0.2 to 07) were compared.
All test accuracies are greater than 85%.

When using the same set of input data, #=0.3 and
a=0.7, we assessed the effects of different number of
nodes in the hidden layer on species recognition (Fig. 4).
When the number of nodes in the hidden laver was
changed from 20 to 150, the best overall average accu-
racy was 93% with 100 nodes, and the lowest accuracy
was 73% with 20 nodes. The overall accuracies with 30,
70, and 150 nodes were the same (91%). Although
slightly better accuracy (one more sample correctly clas-
sified) was achieved with 100 nodes. we prefer a 50-node
hidden layer to the 70-, 100-, and 150-node ones because
of its less computation requirement.

In our experiments, an NN with two hidden lavers
did not produce better results than those with a single
hidden layer. Therefore, all remaining test results were
generated from NNs with #=0.2 or 0.3, a=0.7 and one
hidden layer with 50 nodes unless otherwise noted.

Experiment 2

Table 2 lists the results obtained. from- test samples in
Experiment 2. For the NNs, better recognition accura-
cies in varied degrees were obtained for Sites 1-3 and 6
with first derivative spectra, while slightly better results
were obtained from smoothed reflectance spectra for
Sites 4 and 3. At Sites 1-3, the canopy sizes are smaller
than those for Sites 4-6, and needle/leaf densities are
also lower than those from Sites 4-6. The effect of back-
ground (mainly dry soils) at Sites 1-3 on measured spec-
tra is greater than the mixture background (drv soils,
grasses and litters) at Sites 4 and 3. Taking spectral de-



Table 2. Recognition Accuracies from Test Samples at Each Site®

No. of Training No. of Testing

NN DA

Site Samples Samples Smooth Data Ist Deriv. Smooth Data Ist Deriv.
1 40 80 55.00 91.25 83.75 77.30
2 32 32 39.38 81.50 71.88 63.63
3 30 28 64.29 71.43 71.43 37.14
4 30 30 73.33 70.00 76.67 66.67
3 18 18 66.67 61.11 50.00 55.56
6 30 30 70.00 73.33 70.00 70.00
Overall Accuracy (%) 62.39 79.39 7457 68.81

“ Training samples randomly selected and test samples not overlapping with training samples. NN=neural network identification; hidden laver
nodes=>50; learning rate=0.2; momentum coefficient=0.7: DA=discriminant analvsis. Smooth data—226 bands; Lst deriv.—222 bands of first derivative
data. Overall accuracy=number of correctly identified test samples/total test samples.

rivative can partly remove the effects of low frequency
background soil spectra on target spectra. Therefore, use
of derivative spectra can increase recognition accuracy.
The spectral derivative processing may enhance high fre-
quency noise caused by the inhomogeneous backgrounds
at Sites 4 and 5 leading to decreased recognition accura-
cies at those sites. The effectiveness of spectral derivative
seems to be significant for some sites (e.g., an increase
in accuracy of 36.25% for Site 1). However, for Sites 4
and 5, direct use of smoothed reflectances produced
slightly better results.

Although neural networks can. work with a small

aber of training samples, our results indicate a verv
small number of training samples randomly selected lead
to poor species recognition results due to the insufficient
representativeness of the training samples. Thirty or
more random samples produced stable results at each
site in this study.

Because the use of second derivative spectra for spe-
cies recognition did not produce better results than first
derivative spectra, only results derived from first deriva-
tive spectra are presented here.

Examining the results from discriminant analysis, it
can be seen from Table 2 that the use of original
smoothed reflectances can usually generate better or
equally well recognition accuracies as compared to those
obtained from derivative spectra except for Site 5. This
is because normal distribution is required for each band
for each individual class to achieve optimal results with
discriminant analysis. In general, the smoothed reflec-
tance data for each tree species (class) would meet this
requirement if the number of training samples is suffi-
cient, but the spectral derivative data may not. The low
recognition accuracy at Site 5 with smoothed spectra
may be caused by the relatively smaller size (18) of train-
ing samples.

Comparing the two sets of better results from NNs

d DA, we see that the best accuracies from NN are
_agher than those from DA at Sites 1, 2, 5, and 6, the
same at Site 3, and lower at Site 4. It is interesting that
DA outperformed NN at Site 4 where 60 samples were

measured from only six trees of different species (Table
1). The increased number of samples per tree used for
training may be more helpful to DA.

In general, the use of NN with derivative spectra as
their inputs produced an overall accuracy of 79%, 4%
higher than that produced by DA with smoothed reflec-
tances as inputs. The recognition accuracies vary greatly
across different study sites (e.g, the highest accuracies
of 91% and S4% for site 1 from NN and DA, respec-
tively; the lowest of 61% by NN and 50% by DA both
at Site 5). Although this could be caused by variations of
many factors including background, canopy density, time
of measurement during the day, and illumination change,
we think that the backgound is the major factor causing
the low identification accuracies as explained at the be-
ginning of this section. The variation in illumination on
20 October seemed to cause less a problem to the classi-
fers as data measured at two of the sites (1 and 2) on
that day resulted in the highest accuracies. This is per-
haps because training samples have well represented the
illumination variations.

Experiment 3

When averages of shaded and sunlit spectra for each tree
species were used, some better results were obtained
(Table 3). Except Site 1, all recognition accuracies for
Sites 2-6 increased 6-33% in comparison with the re-
sults presented in Table 2 with the same kind of classifier
and the same derivative spectra. Better results from the
use of average spectra of training samples may be ob-
tained because averaged spectra may be more represen-
tative to each tree species than measured individual
spectra. This is usually true when the total number of
samples for each tree species is small. However, the
overall average accuracy across all six sites is only 78%.
At Site 1, the within-species spectral variability is greater
due to the large number of samples collected and the
longer time used during spectral measurement that could
have involved more illumination variability. Large spec-
tral variability will make the average spectra of samples
less representative to all samples and that in turn will



Table 3. Test Accuracies Obtained from Neural Networks Trained with
Average Spectra from Sunlit and Shaded Sides"

No. of Train  No. of Test Test
Site Samples Samples  No. of Iterations Accuracy (%)
1 12 120 95 45.83
2 12 64 65 87.50
3 12 38 120 98.28
4 12 60 70 90.00
3 12 36 55 94. 44
6 12 60 265 91.67
Overall accuracy (%) — — — 78.14

"The same neural network structure was used with hidden laver nodes=30.
input—first derivative spectra (222 bands). Learning rate=0.3

Network
3: momentum coeftficient=0.7.

Overall accuracy=number of correctly identified sdmples/toml number of samples.

lead to low identification accuracv. This is a potential
problem with the use of average spectra in training.

Experiment 4

Table 4 lists the results obtained from sunlit spectra only.
Although only one average spectrum from each class was
used for training, higher recognition accuracies were
achieved at four of the six sites when compared with the
results in Table 3 except for Sites 2 and 3 where the accu-
racies are 4-3% lower. Compared with Table 3, the over-
1l average accuracy was improved by 13-91%. The much
.ncreased overall accuracy, mainly caused by the improve-
ment at Site 1, is quite satlsfactorv It indicates that there
is smaller differentiation among sunlit samples within the
same tree species than that among both the shaded and
sunlit samples.

Experiment 5

Table 5 lists the accuracies for site identification using
spectra from the same tree species at different sites. An
accuracy close to 0% would indicate that the spectra
from the same tree species measured from ditferent sites
were not separable, implying that tree spectra were simi-
lar and independent of sites. A high accuracy has two
implications. First, it may imply that contribution of

background spectra and illumination change to tree spec-
tra could still be large although first derivative spectra
were used. Second, it may imply that the neural network
algorithm is so sensitive to details that it can be used
to discriminate subtle spectral differences among spectra
collected from different trees (Gong, 1996). When the
amount of leaf area is low and leaf orientation is close
to the vertical direction, more background spectra may
be collected by the spectrometer during the measure-
ment of tree reflectances The effect of illumination
change is stronger when the sun is blocked by scattered
thick clouds from time to time during the spectral mea-
surement. From Table 3, we can see that the identifica-
tion of sites using spectral measurements from the same
tree species is quite successful. Particularly, Douglas fir
(DF), giant sequoia (GS), and white fir (WF) are good
site indicators. This might be because the amount of
leaves of PP is sparse and the leaf orientations of GS,
WF, and DF point mostly upward making more back-
ground observed by the spectrometer. The incense cedar
(IC) has resulted in consistently lower accuracies. This
may be because IC leaves are thicker and most IC leaves
are perpendicular to the spectrometer viewing direction,
preventing much of the background spectra from being
measured. It is reasonable to expect that spectral mea-

Table 4. Identification Accuracies from Sunlit Samples by NN Trained with
the Average First-Derivative Spectra at the Sunlit Side"

No. of No. of No. of  Test Accuracies

Site Training Sets  Test Samples [terations (%)

1 6 60 30 90.00
2 6 32 30 S4.38
3 6 29 35 93.10
4 6 30 SO 90.00
3 6 18 15 100.00
6 6 30 3 93.33
Overall accuracy (%) — — - 90.93

"NN has a structure of one hidden laver with 50 nodes. Learning rate=0.3; momentum
coefficient=0.7. Overall accuracy=number of correctly identified sampels/total number of test

samples.



Table 5. Separability of the Same Tree Species at Different Sites"

No. ()f

Tree Species  Training Samples

Testing Samples

No. of No. of

Iterations

Testing
Accuracy (%)

Among the Study Sites 1, 2 and 3 (Group 1)

DF 22 20 30 95.00
GS 24 22 35 S1.82
IC 18 16 25 73.00
pp 20 18 30 9444
SP 23 23 100 $1.82
WF 20 18 25 9. 44
Among Study Sites 4. 3, and 6 (Group 2)
DF 14 12 15 100.00
GS 14 15 100.00
IC 14 20 73.00
PP 14 10 73.00
SP 14 2 13 91.67
WF 14 12 20 100.00
Among All Six Sites (All Sites)
DF 34 34 40 91.18
GS 36 36 R55 IS
1C 30 30 30 70.00
PP 32 32 105 96.58
SP 36 34 40 §2.35
WF 32 32 45 93.75

1NN has a structure of one hidden laver of 30 nodes. Network input—first derivative spectra
(222 bands). Learning rate=0.2 or 0.3; momentum coefficient=0.7.

surements made from off-nadir directions may reduce
the effect of background. This requires further exper-
iments.

The separability among tree spectra of the same tree
species are 100% correct for species DF, GS, and WF
in Group 2. This implies that the effect of background
spectra on tree spectra may be especially large when the
tree spectra were measured under clear sky condition
(on 21 October). The spectral differences of the back-
ground at ditferent sites could be greater than the differ-
ences in tree spectra of the same species. As a result,
the measured tree spectra may actually be described
mostly by various background components (e.g., dry
soils, grasses, litters, and staking). This is especially true
for those spectra taken from small tree canopies with
sparse needle-leaves. The site identification accuracies
obtained from spectral measurements of 20 October
(Group 1) are lower than those on 21 October (Group
2) under clear skyv condition. The accuracy differences
could be caused by the different separabilities among the
two groups of sites and/or the differences in illumination
conditions between the two days. Since this effect can
be reduced when derivative spectra collected under the
same site background are used, a higher species recogni-
tion accuracy can still be observed from previous exper-
iments.

We conducted a preliminary experiment on within
species separability at the same site to examine the effect
of network sensitivity. Site 1 was selected for the experi-

ment. The highest overall accuracy for tree species rec-
ognition at Site 1 implies that the samples have less
within class variabilitv. Since we have 20 samples from
10 trees of the same species, we randomly divided the
10 trees into two groups of five trees and treated them
as two different classes. From each group of trees, we
then randomly selected five spectral samples for training
and the remaining five samples for testing a neural net-
work. The test accuracy, as an indicator of within-species
separability, was then calculated for each tree species to
see how a network can separate the tree spectra obtained
from two arbitrarily assigned classes of the same tree spe-
cies. The average of the accuracies so determined for the
six tree species is 61%. This indicates that the neural
network algorithm is indeed very sensitive and can be
trained to discriminate finer details. The result has com-
plicated implications to the interpretation of the site dif-
ferentiation results presented above and to the extrapo-
lating capability of the algorithm for species identi-
fication when networks are trained using data from one
site and tested at different sites. Networks sensitive to
fine spectral details, noted as “overtrained elsewhere
(e.g., Gong, 1996), may lose extrapolation capability.
These implications will be further studied.

Experiment 6

From Table 6, it can be seen that recognition accuracies
with visible bands (140 bands) are consistently better
than those from NIRL bands (82 bands) for every study



Table 6. 1dentilication Accuracies from Nine Band Groups*

NIR 2
(784-826 nm)

NIR 1

(700-923 nm)

Visible
(333-700 nn)
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(700=744 nm)
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BG
(462-505 nm)  (536-580 nm) (590641 nm) (652-695 nm)

No. of

Test
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No. of
Training

Six-Band
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43.75

41.25
37.50
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46.25
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56.25

42.50
34.38

50.00
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66.67

43.33
38.39

56.67

40.00
27.78
36.67

46.67
16.67

43.33

40.00

55.56

43.33

50.00

66.67

50.00
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50.00

18

30
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30

50.00

50.00

80.00

36.67

53.33

50.00

Overall

43.54
0.7. Visible has

41.74
w edge, RW: red well, RE: red-cdge. Overall ace.=number

50.00 79.36 52.29

43.12

40.83

43.58

64.22

ace. (%)

0.2; momentum coefficient

wmd groups. Input was first derivative spectra; learning rate

site. when the same training samples and test samples
were used. The more spectral variability in the visible re-
gion resulted in larger variation in derivative values than
those from NIRI. The larger variation in the derivative
spectra contributed more to tree species identification.
The recognition accuracies for Sites 1, 3, and 6 in Table
6 are greater than the corresponding ones obtained from
all the spectral bands (Table 2). This indicates that many
spectral bands may not be necessary for species recogni-
tion. A lot of spectral bands may not only introduce more
noise but also increase the amount of computation.

Among the six spectral regions of 18 bands each, the
highest overall accuracy of 64% was obtained with the
blue to green (BG) region. The red-edge (RE) region
ranks the second (50%) and the vellow edge region ranks
the lowest accuracy (41%). The results indicate that the
blue-edge (BG) of the green peak may be more impor-
tant than the red-edge of tree spectra in discriminating
tree species. Since the BG region is also more affected
by the atmospheric interference due to its shorter wave-
length, its effectiveness in airborne and spaceborne re-
mote sensing should be further assessed. Although there
are only six bands in the six-band group, the recognition
accuracy (44%) is close to that (42%) of GP and NIR2
regions both having 18 bands. The results from this ex-
periment indicate that some bands are more important
than others in tree species identification. Therefore, se-
lecting a smaller number of bands while preserving as
much discriminating power as possible is an important
task in tree species identification.

Experiment 7

With the same set of data, that is, both smoothed data
and first-order derivative spectra from Site 1, the same
network structure, that is, #=0.3, a=0.7, and 20 or 30
nodes in the hidden layer, we tested four different
schemes of band reduction. Table 7 lists the better re-
sults achieved from either the use of 20 or 30 hidden-
layer nodes for each set of the 44 input features obtained
from a band reduction scheme. For the smoothed spec-
tra, higher recognition accuracies (63% and 69%) were
obtained by the use of band reduction as compared with
the use of all bands (i.e., 35% in Table 2). The averaging
of derivative data resulted in poorer accuracies (81%)
than the use of all derivative bands (i.e., 91% in Table 2).
This is understandable because averaging could remove a
lot of differential information as contained in the original
derivative data. When the FCA was used to the deriva-
tive data, the best recognition results (98%) were ob-
tained. More than half of the 44 derivative bands se-
lected by the FCA are in the ultraviolet to blue region
and approximately 30% in the near infrared region. This
indicates that derivative bands in those regions have
stronger discriminating power than those in the green,
red, and red-edge regions. This experiment proves that



Table 7. Identification Accuracies of Some Subsets of Bands from Site 1°

No. of No. of No. of No. of  Accuracy
Scheme Training Samples Test Samples H-Layer Nodes Iterations (%)
ASB 40 80 20 655 62.50
ADB 40 80 30 215 81.25
SSB 40 80 30 590 68.75
SDB 40 80 30 185 97.30

" NN structure: 1 hidden layer, learning rate=0.2, momentum coefficient=0.7, input

nodes=44.

H-Laver=hidden layer. Scheme abbreviations, see text.

better accuracies are obtainable with a smaller number
of spectral bands than the use of all bands and led us to
undertake more detailed experiments on the comparison
of various band selection methods. Results will be pre-
sented in a separate article.

SUMMARY AND CONCLUSIONS

We reported experiments undertaken to classify six coni-
fer species from hyperspectral measurements taken in
the field. Instead of analvzing spectral properties mea-
sured from individual landscape components such as tree
leaves, branches, litter, bark, soils, grass, and shrubs, we
analyzed spectra taken directly from above tree canopies.
We believe that this analvsis of in situ tree spectra mea-
sured at the “integrated canopy level would provide

ore direct insights to the practical use of remote
sensing.

We tested an artificial neural network algorithm and
linear discriminant analysis for conifer species identifica-
tion. The hyperspectral data were measured from six
sites at the Blodgett Forest Research Station of the Uni-
versity of California at Berkeley, located in the western
slopes of Sierra Nevada. The six conifer tree species are
Douglas fir, giant sequoia, incense cedar, ponderosa
pine, sugar pine, and white fir. Raw hyperspectral data
were processed to form two types of data for species
identification, smoothed reflectances, and first derivative
spectra. We tested species recognition using samples
from each of the six studv sites.

With neural networks applied to first derivative data
from all spectral bands. the overall average identification
accuracy calculated from test samples was 79% when
about 45% of the total samples were used to train neural
networks and the remaining 55% were used for testing.
This overall accuracy is 17% higher than the use of
smoothed reflectances with the neural networks. It is
10% higher than the use of linear discriminant analysis
when exactly the same data were used. With linear dis-
criminant analysis applied to the smoothed data, the
overall average accuracy was 75% with the same set of
~-aining and testing samples as those used for the neu-

1 networks.
The use of average spectra of all samples for a par-

ticular tree species in training with the neural networks
applied to first derivative data resulted in an overall ac-
curacy of 78% when all 398 samples were used as test
samples. Use of only average sunlit samples for neural
network training resulted in an overall accuracy of 91%
when all the 199 sunlit samples were used as test sam-
ples. This represents the most successful identification of
the six conifer species.

The effects of background spectra and illumination
change on tree species spectra among different sites can
be large, especially when the canopy leaves are sparsely
distributed and the leaf orientation makes background to
be observed easily from nadir direction. Further study
should be made to separately analyze the effects of back-
ground and illumination changes on hvperspectral mea-
surements for tree species identification.

The discriminating power of the visible region is
stronger than the near-infrared region. With the visible
region alone, an overall accuracy of 79% was achieved
with the neural networks. When six physically meaning-
ful spectral regions were compared for tree species rec-
ognition, the 18-band blue-green spectral region resulted
in an overall accuracy of 64%. With 82 near-infrared
bands, the overall accuracy was only 52%. Some initial
results on band selection prove that a smaller number of
spectral bands can produce better accuracies than the
use of all the bands. A challenging task is to select the
appropriate spectral bands for different purposes with a
limited number of samples.

Our experiments indicate that the six conifer species
studied in this research can be identified with high accu-
racy based on spectral measurements made at sunlit
sides of tree canopies under stable illumination condi-
tions. Only when more analysis is done to spectral mea-
surements made from more conifer species and in differ-
ent seasons and cross validations both in space and in
time are done, will we accomplish our test of the hvpoth-
esis posed at the beginning of the Introduction. A com-
panion article is under preparation that deals with the
spectral measurements in early spring, summer, and fall
at those study sites. One of the conclusions in that article
is that differences in solar elevation in different seasons
do not have a significant effect on the performance of
the classifiers for the identification of the six species.



Collaboration with other scientists is underway to con-
duct leaf biochemical analysis of giant sequoia, a species
less studied biochemically and physiologically. This could
provide insights to our hyperspectral analysis. Hypers-
pectral data acquired from airborne and satellite plat-
forms will also be tested for conifer species identifi-
cation.
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