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The performances of two probabilistic relaxation
(PR) classification methods, a standard and a mod-
ified version, are assessed in terms of classification
accuracy measured by the Kappa coefficient and
the CPU time required to carry out the computa-
tion. The classification results obtained with these
methods are compared with results obtained using
conventional maximum-likelihood classification
(MLC). Experiments indicate that the modified PR
method significantly improves upon the classifica-
tion results generated by the MLC method. The
modified PR method saves up to 70% of the CPU
time, compared with the standard PR method, and
also gives slightly better classification accuracy.

INTRODUCTION

Recent studies of land classification in the
rural-urban fringe using satellite data have indi-
cated that the commonly-used per-pixel classifiers
do not produce higher classification accuracies from
higher spatial resolution data (Toll, 1984; Irons
et al., 1985; Martin et al., 1988). Such classifiers
include the maximum-likelihood classifier (MLC)
and the minimum-distance classifier (MDC), which
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only use the spectral information from each pixel
on an individual basis. The large amount of spatial
information existing in an image is thus ignored.
To increase classification accuracies using higher
spatial resolution data, it is desirable to incorporate
both spectral and spatial information into the clas-
sification process.

Three approaches for incorporating spatial in-
formation in a classification can be identified. Each
approach is used at a different stage of the process.
The first group consists of the preclassification
approaches which use spatial information ex-
tracted from the original images as additional bands
of data in the classification process. Such methods
include the use of filtered images (e.g., Dutra and
Mascarenhas, 1984; Cushnie, 1987), images con-
taining structural information such as edge density
(Hlavka, 1987; Gong and Howarth, 1990) and
region characteristics such as the mean and vari-
ance of gray levels, size, shape, and compactness
(Ketting and Landgrebe, 1976; Egawa and Kusaka,
1988). Texture features (e.g., Haralick et al., 1973;
Weszka et al., 1976; Hsu, 1978; Jensen, 1979) are
also included in this group. The second group of
approaches may be categorized as post-classifica-
tion methods. They use logic filters to reduce noise
in the classified results (e.g., Gurney, 1981; Town-
shend, 1986). The third group involves use of
contextual classifiers and compound decision rules
(e.g., Welch and Salter, 1971; Fu and Yu, 1980;
Landgrebe, 1980; Swain et al., 1980; Owen, 1984;



Haralick and Joo, 1986), or the use of probabilistic
relaxation (e.g., Richards et al., 1982; Harris, 1985;
Gong and Howarth, 1989). Although the effects of
the first two approaches are well known in remote
sensing, the third type of approach has received
relatively little attention.

In this study, we focus on the evaluation of
two probabilistic relaxation (PR) methods for
land-cover classification at the rural-urban fringe.
The first PR method is the standard one, proposed
by Rosenfeld et al. (1976) and further developed
and tested by several others including Peleg and
Rosenfeld (1978), Eklundh et al. (1980), Richards
et al. (1981a), Kalayeh and Landgrebe (1984), and
Lee and Richards (1989). In this relaxation proce-
dure, all the probabilities for each pixel are used in
the probability updating. The second method is a
modified PR approach (Gong and Howarth, 1989)
in which only a few significant probabilities for
each pixel are used. In addition, a probability
threshold is set in this second method which ex-
cludes a pixel from probability updating when its
largest probability is higher than a specific thresh-
old.

The objectives of this study are:

e To compare the effectiveness of the two PR
methods in improving the classification results
when compared with the MLC method.

e To examine, using the modified PR approach,
the effects of different thresholds on the classi-
fication result.

e To evaluate the effects on the classification
result of using weighting factors in the PR
process.

The criteria for evaluating these results are the
classification accuracies measured by means of the
Kappa coefficient (Cohen, 1960) and the CPU
time required to undertake the classification.

STUDY AREA, DATA, AND
CLASSIFICATION SCHEME

The rural—urban fringe of northeastern Metropoli-
tan Toronto (43°49'N; 79°10'W) was selected as
the site for this study. Urban expansion has been
occurring rapidly in recent years with large tracts
of agricultural land being converted into built-up
areas. The area is therefore of interest for studies
of rural-to-urban land conversion and land-cover

classification (Johnson and Howarth; 1987;
Howarth et al., 1988; Martin et al., 1988; Martin,
1989; Gong and Howarth, 1989; 1990).

A 512x512 pixel subscene of SPOT HRV
multispectral (XS) data acquired on 4 June 1987
was used in the study. In order to make it easier to
compare the satellite imagery with other informa-
tion such as aerial photographs and maps of the
area, a geometric correction was applied to trans-
form the original XS data to the UTM projection
with 20 mx20 m resampled pixels. This was
achieved using a third-order polynomial and cubic
convolution interpolation. As the study area is
relatively small and flat, both topographic and
atmospheric conditions were assumed to be homo-
geneous. Therefore, no further radiometric correc-
tion was made to the XS data. In order to reduce
the amount of computation, the three original
bands of XS data were transformed into two bands
through principal component analysis (PCA). The
two new bands of data contain over 99% of the
total variance of the original data.

Twelve land-cover classes were used in the
study. They are residential roof, paved surface,
industrial and commercial roof, cleared land, lawn
and tree complex, cultivated grass, deciduous tree,
coniferous tree, crop cover, new crop and pasture,
bare field, and water surface. A more detailed
discussion of the characteristics of these land-cover
classes is to be found in Gong and Howarth (1990).

METHOD AND ALGORITHM

The Standard Probabilistic Relaxation Approach

The PR model can be illustrated using land-cover
classification as an example. Assume that a digital
image with a size of N pixels is to be classified into
m classes (Cy, Cg---»Cy). The probability that a
pixel i is classified into class ¢; is defined as P(c;).
For a whole image there are N X m probabilities.
They satisfy the condition

m

forall i, and
jz__:lP"(cf) =L forall jand i.

0<Plc;) <1,

(1)

The values of P(c;) can be determined in several
ways. Most frequently, there is no other source of
data and thus they are derived from a simpler
classification procedure such as the maximum-like-



lihood classification, as discussed in more detail
later (Eklundh et al., 1978; Harris, 1985). Com-
mencing with these values as initial values, the
relaxation process employs probability information
from predefined neighboring pixels, iteratively, to
create new probabilities for each pixel. It is thus
expected that any ambiguities that occur in the
original classification will be reduced. The new
probability for pixel i with class label ¢ at the
(k + I)th iteration is estimated through the updat-
ing rule

Pye) = bl
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where k indicates the iteration, with k = 0 repre-
senting the initial probabilities obtained from a
simpler classification. The denominator ensures
that the newly created probability satisfies Eq. (1).
The term g, \(c) is the updating factor or neigh-
borhood operator which expresses the influence of
all the predefined neighboring pixels on the pixel i.
It is determined from the equation

ale)= X w, X nfec)Ble), (3)

where n is the number of the predefined neighbor-
hood pixels and w;; is the weighting factor from
neighborhood pixel j to pixel i (j may be i itself).
Often the weights of all the neighborhood pixels
for pixel i are assumed to be equal (Peleg and
Rosenfeld, 1978; Eklundh et al., 1980). According
to Richards et al. (1981b), it is also reasonable to
assume that the weight of pixel i (whose probabili-
ties are to be updated) will be higher than each of
its neighbors. The term r, (¢, ¢;) is the compatibil-
ity coefficient between plxel i VVlth class ¢ and one
of its neighborhood pixels j with class ¢ It is this
coefficient that combines the information from the
neighboring pixel. Detailed discussion on the cal-
culation of the compatibility coefficients can be
found in Peleg and Rosenfeld (1978) and Haralick
(1983). One commonly used method, namely cor-
relation compatibility coefficients, is applied in this
study.

A detailed explanation of the relaxation pro-
cess is given by Harris (1985). The relaxation
process [Eq. (2)] continues until a certain criterion
is met. The criterion can be the number of itera-
tions, the fixed point which means that no changes

between two successive iterations are observed
(Haralick et al., 1980), or when all the global
context has been taken into account (Haralick,
1983).

Derivation of the m Initial Probabilities
for Each Pixel

According to Richards (1986), a suitable discrimi-
nant function for each pixel X with class j in its
natural logarithm form is

g,(X)=MnP(c;) —0.5In|%|
—05(X-M;)'S7(X-M,), (4)

where X is the vector of spectral reflectance for
the pixel to be classified, g(X) stands for the
discriminant function for class j» and P(c;) is the
a priori probability of class j. Usually measured
values of the a priori probabilities are not available
at the beginning of the classification, so that they
are assumed for each class. The term |2 | is the
determinant of the variance—covariance matnx of
class j, 2/ ! is the inverse of the variance—covari-
ance matrix for class j, and M. is the mean of
class j. The terms |2 |, 2].’1, and M are obtained
from training data. The value of g (X) is the
logarithm of the probability for pixei X having
class j, under the assumption that the data are
class-conditionally Bayesian. To initialize the relax-
ation, Eq. (1) has to be satisfied. A value for P(c))
can be derived by normalizing the antlloganthms
of g,(X) obtained in Eq. (4). It should be noted
that the antilogarithm of g(X) is proportional to
the real probability for p1xel X to have a label c;.

The Modified Probabilistic Relaxation Approach

Gong and Howarth (1989) showed that the PR
process may not necessarily require all the proba-
bilities for each pixel to be labeled. Because the
magnitudes of the probabilities for each pixel differ
significantly, it was suggested that only a few of
the largest probabilities for each pixel be included
in the PR process. To obtain these larger probabili-
ties, a sorting process has to be undertaken after
all the m probabilities for each pixel have been
calculated. From this point on, only the larger
probabilities are stored and used to calculate the



initial probabilities. All other probabilities are con-
sidered as zero.

The second difference between the modified
PR model and the standard one is that a threshold-
ing option is included in the modified model. As
the purpose of the PR process is to reduce the
class labeling ambiguity for each pixel, it is reason-
able to exclude a pixel from probability updating if
there is less ambiguity for this pixel. The higher
the largest probability of a pixel to be assigned to a
specific class, the lower is the classification ambigu-
ity. Bearing this in mind, a probability threshold
can be set for the PR process. If a pixel’s largest
probability is higher than the threshold, the proba-
bilities for this pixel will be fixed and thus will no
longer be updated in the relaxation. In this case,
the amount of computation will be reduced com-
pared to the standard PR model in which every
pixel is taken into account.

The last change made to the standard PR
process is the determination of weighting factors.
In the standard model, the influences of neighbor-
hood pixels (except the one for which the probabil-
ities are to be updated) are equally weighted. This
has the disadvantage that too much uncertainty
from the neighboring pixels may be added to the
probability updating. It is expected that neighbor-
ing pixels which have lower classification certain-
ties should be weighted less than those having
higher certainties. Such a certainty factor for a
pixel can be derived from the sum of the g A(X)’s
obtained in Eq. (4). The reason for doing this is
based on the observation that if a pixel has a
higher probability of being classified into a certain
class (i.e., is less ambiguous), then the sum of its
probabilities tend to be larger. The weighting fac-
tor for a neighborhood pixel j to pixel i is there-
fore modified in the form

“/ij:ajsj/kZIkaks (5)

where the terms w;; and n were introduced ear-
lier. S. is the certainty indicator for pixel j, k
denotes all the n neighborhood pixels for pixel i,
and a is the standard weighting factor. As pixel i
is usually included in the neighborhood, its weight
is a, If the weights of all the other pixels are
equal, each weight is (1 —a;)/(n —1).

With these modifications, it is expected that
the PR process will be able to handle larger size
images and to obtain more classes faster, in com-
parison to the standard PR model.

TESTS

In this study, the procedures described above have
been implemented on a VAX11/785 computer
using the FORTRAN 77 programming language. The
amounts of CPU time calculated in this paper are
therefore dependent on this particular machine
and the programming efficiency of the authors.
Thus, CPU times should only be interpreted in a
relative manner.

A neighborhood of nine pixels was used in the
probability updating. The neighborhood contains
the pixel i, whose probabilities are to be updated,
and its eight surrounding neighbors. Four different
values for the weighting factor a; were tested.
They were 0.11, which indicates equal weights in
the neighborhood for the standard PR process,
0.15, 0.20, and 0.25. The higher figures gave pixel
i more weight, indicating an increasing influence
from pixel i. Four thresholds (0.5, 0.7, 0.9, and 1.0)
were tested in the modified PR model. The last
figure (i.e., 1.0) in fact means that no thresholding
is employed in the modified PR process. The clas-
sification results and CPU time used by the modi-
fied PR model with the threshold 1.0 were com-
pared to the results and times associated with the
standard PR model. The number of significant
probabilities for each pixel used in the modified PR
process was four. The use of four different weight-
ing factors constituted four trails for the standard
PR model. The combination of the four thresholds
and the four weighting factors resulted in 16 trials
for the modified PR model. For both the standard
and the modified PR models, 20 iterations were
tested within each trial.

The initial probabilities for each pixel were
obtained through a supervised maximum-likelihood
classification. Training samples for each land-cover
class consisted of 60 pixels. They were selected on
a single pixel basis with the aid of 1:8,000 scale
aerial photographs obtained in April 1987.

Test pixels for accuracy assessment were ob-
tained through a stratified systematic unaligned
sampling strategy (Jensen, 1983). A 16X16 block
was used. As a result, 1024 pixels were obtained
for the test sample. The identity or land-cover class
of each sample pixel was recorded by the analyst.
It should be noted, however, that even with the
help of the aerial photographs, the analyst encoun-
tered difficulties in labeling some of the mixed
pixels. Using such data in the accuracy assessment
may result in an underestimate of the classification



accuracies. A comparison of the reference or
ground data and the classification results for each
iteration of the PR process permitted a confusion
matrix to be produced.

The Kappa coefficient K (Cohen, 1960) and its
variance V (Fleiss et al., 1969) were then calcu-
lated for each confusion matrix. For an m Xm
confusion matrix, let p;; be the proportion of
subjects placed in the i, jth cell; let p,. and p_;
be the proportions of subjects placed in the ith
row and jth column, respectively. Then, with

m m
Po = Z p,; and p .= Z Pis P> (6)

i=1 i=1
the Kappa coefficient K is defined by
5 Py~ Pe
K - 10_ p() ’ (7)

where p, and p, indicate the proportion of units
which agree and the proportion of units for ex-
pected chance agreement, respectively. With the
above definition, Fleiss et al. (1969) showed that
the most appropriate method to estimate the vari-
ance of K is

A ) n
V=EH?;?&§?AH_E)

— (it pi)(1=py)]

+(1- po)2 Z Z pij(pi+ + p+]’)2

i=1j=1
- (p()pc - 2p{: + ’pO)Q}’ (8)

To determine the difference between two K’s,
the significance test proposed by Cohen (1960) for
comparing two classification results was adopted.
With this method, the difference between two
Kappa coefficients resulting from two classifica-
tions is first obtained. The square root of the sum
of the variances V between the two classifications
is then calculated. A Z-value can be determined by
dividing the difference by the square-root. A Z-
value above 1.960 indicates that the two classifica-
tion results are significantly different at the 95%
confidence level.

The K has been recommended by Rosenfield
and Fitzpatrick-Lins (1986) as a suitable accuracy
measure in thematic classification for representing
the whole confusion matrix. It takes all the ele-
ments in the confusion matrix into consideration,
rather than just the diagonal elements which oc-

curs with the calculation of overall classification
accuracy. The variance was used when significance
tests were made.

RESULTS AND DISCUSSION

Before the relaxation procedure was initiated, a
maximum-likelihood classification was applied to
the two PCA images, using the training samples
described above. As a result, a Kappa coefficient of
0.394 was obtained. This can be compared with
the results obtained by the PR models. In order to
present the results, five tables (Tables 1-5) were
generated with Table 1 containing the results for
the standard PR process, and the remainder listing
the results obtained with the modified PR process
using thresholds of 0.5, 0.7, 0.9, and 1.0. Within
each table, the Kappa coefficient was calculated
for each iteration. Kappa coefficients obtained by
the use of each weighting factor are listed in
individual columns. The average Kappa coefficient
for each column has also been calculated to deter-
mine the effects of the change of weighting factor
on the classification results. The CPU time used is
listed for each weighting factor (i.e., each trial)

Table 1. Kappa Coeflicients Obtained and CPU Time Used
by the Standard PR Model

Weighting Factor
Iterations 0.11 0.15 0.20 0.25
1 0.406 0.407 0.407 0.407
2 0.413 0.410 0.411 0.413
3 0.422 0.424 0.423 0415
4 0.427 0.426 0.424 0.424
5 0.433 0.428 0.429 0.425
6 0.435 0.436 0.431 0.428
7 0.434 0.431 0.435 0.432
8 0.433 0.436 0.432 0.435
9 0.434 0.432 0.435 0.433
10 0.4361 0.433 0.436 0.433
11 0.436 0.436 0.436 0.437
12 0.433 0.4371 0.433 0.436
13 0.436 0.436 0.436 0.4372
14 0.433 0.434 0.436 0.436
15 0.430 0.434 0.4370 0.4384
16 0.429 0.436 0.4370 0.436
17 0.431 0.433 0.434 0.436
18 0.429 0.434 0.433 0.435
19 0.430 0.430 0.435 0.435
20 0.425 0.430 0.434 0.436
CPU time 14:30.26 14:24.52  14:34.26 14:34.46
(h:min.s)
Significance test 1.684 1.724 1.724 1.780




Table 2. Kappa Coefficients Obtained and CPU Time Used
by the Modified PR Model with a Threshold of 0.5

Table 4. Kappa Coefficients Obtained and CPU Time Used
by the Modified PR Model with a Threshold of 0.9

Weighting Factor Weighting Factor
Iterations 0.11 0.15 0.20 0.25 Iterations 0.11 0.15 0.20 0.25
1 0.402 0.402 0.402 0.402 1 0.404 0.403 0.403 0.402
2 0.408 0.409 0.409 0.407 2 0.417 0.416 0.413 0.412
3 0.413 0.412 0.412 0.412 3 0.429 0.428 0.428 0.427
4 0.413 0413 0.413 0.413 4 0.431 0.429 0.429 0.428
5 0.413 0.413 0.413 0.413 5 0.435 0.434 0.433 0.432
6 0.412 0.412 0.412 0.411 6 0.435 0.435 0.436 0.436
7 0.413 0.413 0.413 0.412 7 0.437 0.440 0.439 0.436
8 0.413 0.413 0.413 0.413 8 0.441 0.439 0.440 0.439
9 0.413 0.413 0.413 0.413 9 0.441 0.440 0.438 0.438
10 0.415 0.415 0.415 0.415 10 0.4426 0.4439 0.4431 0.441
11 0.415 0.415 0.415 0.415 11 0.440 0.441 0.443 0.4428
12 0415 0.415 0.415 0.415 12 0.4426 0.441 0.440 0.4425
13 0413 0.413 0.415 0415 13 0.440 0.440 0.443 0.442
14 0413 0.413 0.413 0.415 14 0.442 0.442 0.441 0.441
15 0.413 0.413 0.413 0.413 15 0.440 0.441 0.441 0.449
16 0413 0413 0.413 0.413 16 0.441 0.441 0.440 0.4427
17 0.413 0.413 0.413 0413 17 0.439 0.440 0.441 0.442
18 0413 0.413 0413 0413 18 0.437 0.438 0.440 0.440
19 0413 0413 0413 0412 19 0.435 0.437 0.438 0.440
20 0.413 0.413 0.413 0.412 20 0.437 0.436 0.436 0.438
CPU time 1:06.39 1:08.02 1:09.14 1:04.55 CPU time 7:58.56 8:02.11 8:92.02 8:30.51
(h:min.s) (h:min.s)
Significance test 0.845 0.845 0.845 0.845 Significance test” 1.944 2.002* 1.970* 1.952

Table 3. Kappa Coefficients Obtained and CPU Time Used
by the Modified PR Model with a Threshold of 0.7

Weighting Factor
Iterations 0.11 0.15 0.20 0.25

1 0.404 0.403 0.404 0.404

2 0.417 0.416 0.413 0.413

3 0.429 0.428 0.428 0.427

4 0.431 0.429 0.430 0.427

5 0.434 0.434 0.435 0.432

6 0.434 0.435 0.437 0.435

7 0.439 0.437 0.435 0.435

8 0.436 0.434 0.436 0.437

9 0.440 0.438 0.437 0.435

10 0.443 0.444 0.444 0.440

11 0.441 0.443 0.442 0.444

12 0.440 0.439 0.441 0.443

13 0.4431 0.44433 0.440 0.442

14 0.442 0.442 0.44430 0.443

15 0.439 0.440 0.442 0.44430

16 0.438 0.438 0.441 0.441

17 0.438 0.438 0.438 0.441

18 0.436 0.438 0.438 0.438

19 0.438 0.437 0.437 0.438

20 0.437 0.438 0.437 0.438

CPU time 4:12.07 4:20.18 4:28.57 4:36.57
(h:min.s)

Significance test” 1.966* 2.014* 2.013* 2.013*

@ * jndicates the test is significant at the 95% confidence level.

¢ * indicates the test is significant at the 95% confidence level.

within each table. The largest Kappa coefficient in
each trial is underlined and is referred to as the
“trial Kappa maximum.” In each trial, the trial
Kappa maximum and the number of the iteration
at which the maximum is obtained are of impor-
tance. The trial Kappa maximum reflects how much
improvement in accuracy a PR process can achieve.
On the other hand, the number of the iteration at
which the maximum is achieved indicates how
soon the best result will occur in the PR process.
From the point of view of the CPU time, the
sooner the better. Finally, the difference between
the trial Kappa maximum and the Kappa coeffi-
cient obtained from the MLC has been trans-
formed into a standard normal distribution score,
which is used for the significance test. A score of
1.96 is the lowest for accepting a significant dif-
ference at the 95% confidence level.

Tables 1 and 5 display the results obtained
from the standard and the modified PR model,
both with a threshold of 1.0. A comparison of the
two tables indicates that the standard model used
about 10-30 min more CPU time than the modi-
fied model in the four different trials, while each
trial maximum obtained by the standard model



Table 5. Kappa Coefficients Obtained and CPU Time Used
by the Modified PR Model with a Threshold of 1.0

Weighting Factor
Iterations 0.11 0.15 0.20 0.25
1 0.404 0.403 0.403 0.402
2 0.417 0.416 0.413 0.412
3 0.429 0.428 0.428 0.427
4 0.434 0.430 0.429 0.428
5 0.435 0.434 0.433 0.435
6 0.436 0.436 0.438 0.435
7 0.438 0.440 0.439 0.436
8 0.442 0.441 0.440 0.440
9 0.442 0.442 0.442 0.442
10 0.4427 0.4441 0.441 0.441
11 0.439 0.440 0.4425 0.4428
12 0.441 0.440 0.439 0.441
13 0.440 0.442 0.441 0.439
14 0.440 0.442 0.441 0.441
15 0.439 0.439 0.440 0.442
16 0.440 0.440 0.439 0.441
17 0.438 0.438 0.439 0.438
18 0.437 0.439 0.439 0.439
19 0.435 0.436 0.437 0.438
20 0.438 0.437 0.436 0.437
CPU time 14:07.18  14:01.42 14:21.56  13:56.46
(h:min.s)
Significance test” 1.948 2.006* 1.940 1.952

“ * indicates the test is significant at the 95% confidence level.

was about 0.005 less than the corresponding value
produced by the modified model. The scores for
the significance test of the modified model are
higher than for the standard one. In Table 5, one
trial Kappa maximum (obtained using a weighting
factor of 0.15 for the pixel to be updated) even
shows a significant improvement over the value for
the MLC at the 95% confidence level. It can also
be observed from the two tables that the modified
model reaches its trial Kappa maximum faster than
the standard model.

To assess the effects of different threshold set-
tings in the modified model, the CPU time used at
each test threshold has been plotted against that
used in the standard model (Fig. 1). It can be seen
that by the process of thresholding, the CPU time
required in the PR process has been greatly re-
duced. As one might expect, the lower the thresh-
old, the fewer are the pixels for which the proba-
bilities need to be updated. Consequently, the use
of a lower threshold results in a large saving of
CPU time. To select an appropriate threshold,
however, one needs to consider not only the
amount of CPU time saved, but also the trial
Kappa maximum. The ideal situation is when the
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Figure 1. CPU time used by the standard PR model (S) and
the modified PR model (M) with thresholds of 0.5, 0.7, 0.9,
and 1.0. The weighting factors are 0.11, 0.15, 0.20, and 0.25.

threshold with the lowest CPU time is selected for
the highest Kappa value that can be achieved.
However, this is not the case in this study. As can
be seen from Table 2, although the CPU time
reaches a minimum of about 1 h and 10 min at the
threshold level of 0.5, the classification results are
much poorer than those obtained at the other
thresholds (Tables 3, 4, and 5). This is because too
many pixels with high ambiguities have been ex-
empted from the probability updating at the low
threshold level. The scores for the significance test
at this threshold are the lowest shown in all five
tables. Usually, one needs to compromise between
computing time and accuracy.

By comparing Tables 3, 4, and 5, it can be
seen that when thresholds of 0.7, 0.9, and 1.0 are
used, there are some minor differences among trial
Kappa maxima. The threshold of 0.7 is preferred
to the other two. This is supported by two impor-
tant observations. First, the highest trial Kappa
maximum among the three tables is found in Table
3. Second, all the four trial Kappa maxima in Table
3 passed the significance test at the 95% confi-
dence level, while this was achieved in only two
tests in Table 4 and one test in Table 5. The CPU
time required at the 0.7 threshold level is about 4 h
and 30 min, which is approximately half the time



required at 0.9, and about 30% of that required at
1.0. Therefore, 0.7 seems to be the optimum
threshold for this study when both the CPU time
and the accuracy are taken into consideration.

A specific threshold will determine the number
of times that probability updating occurs in a trial.
The number of times it occurs is approximately
proportional to the amount of computation mea-
sured by the CPU time in the PR process. It is
therefore possible to estimate from the CPU time
the number of times that probability updating
occurs in the PR process at a certain threshold. If
the threshold of 1.0 is taken to mean that 100%
probability updating has occurred, then the per-
centages for thresholds 0.5, 0.7, and 0.9 are ap-
proximately 8, 30, and 55, respectively. Hence, for
this study, it appears that an optimum threshold
can be obtained when about 30% of the probabil-
ity updating has been undertaken. If the probabil-
ity distribution for the largest probability of each
pixel is known beforehand, the threshold may be
selected more easily.

From the five tables, it can be observed that
the difference in weighting factors affects the
number of iterations required to achieve the trial
Kappa maximum. Almost every table shows the
same trend, namely, that the use of a smaller
weighting factor means that the maximum is
achieved faster. This is not surprising when the
reasons for setting the weighting factors are con-
sidered. The larger the weighting factor for the
pixel whose probabilities are to be updated, the
smaller are the weights of its neighboring pixels.
The smaller weighting factors of neighboring pix-
els means that these pixels have less influence in
the probability updating process. However, it is
these neighboring pixels which bring spatial infor-
mation to the classification in each iteration.
Therefore, for spatial information to have a similar
degree of effect on the classification results, the PR
process needs more iterations with smaller weights
from neighboring pixels. By comparing the magni-
tudes of all the trial Kappa maxima produced by
the modified model in Tables 3, 4, and 5, the
weighting factor of 0.15 seems to be preferable.
This is because in each of these tables the highest
trial Kappa maximum came from the trial when
the weighting factor of 0.15 was used.

From Figure 1, it is apparent that a standard
PR model requires too much computation. One of
the major purposes of the modified PR model is to

reduce the amount of computation needed. in the
PR process. From the results obtained in this
study, it can be seen that a moderate reduction of
computation has been achieved. However, the time
involved is still too much for this model to be
considered operational on systems such as the VAX
11/785 and the particular software implementa-
tion used. To overcome this problem, faster com-
puter systems such as parallel processing systems
and contextual classification algorithms requiring
less computation are necessary.

In this study, analysis of the thresholds and
weighting factors was done in an exhaustive man-
ner because very little is known about the PR
process. However, the work does not provide a
complete understanding of the entire PR process.
For example, the degradation of Kappa values can
be observed in every table presented in this study.
The reason for this effect is not immediately ap-
parent to the authors. It is suspected, however,
that more noise from nonlocal areas could have
been introduced into the probability updating pro-
cess as the number of iterations got larger. This
would mean that a larger neighborhood had been
incorporated into the analysis.

Further research is required in several direc-
tions. First, it is necessary to reduce the iteration
time (or the converging time) required to reach
the maximum accuracy or to test the use of nonit-
erative methods. Second, it is important to test the
use of different compatibility coefficients, such as
the nonstationary method (e.g., Kalayeh and Land-
grebe, 1984), and the weighting strategies. Third,
it is suggested that the PR methods be applied in a
range of different landscapes. In this way, re-
searchers should achieve a better understanding of
the effects of selecting different thresholds and
weighting factors.

CONCLUSIONS

In comparison with the MLC method, the modi-
fied PR model can significantly improve classifica-
tion accuracy. The modified PR model performed
slightly better than the standard model in this
study. It is possible to select an optimum thresh-
old for the PR process, which will not only reduce
the computation requirement considerably, but will
also produce better classification results. However,
there is no efficient way to select the optimum



threshold. Weighting factors affect the time re-
quired to achieve maximum accuracy. The PR
process involves many parameter options and is
computationally complicated. Further research is
needed to completely understand the entire PR
process.
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