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Forest Canopy Closure from Classification and
Spectral Unmixing of Scene Components—
Multisensor Evaluation of an Open Canopy

Peng Gong, Member, IEEE, John R. Miller, and Michael Spanner

Abstract—Three types of remote sensing data, color infrared
aerial photography (CIR), compact airborne spectrographic
imager (CASI) imagery, and airborne visible/infrared imaging
spectrometer (AVIRIS) imagery, have been used to estimate
forest canopy closure for an open-canopy forest environment.
The high-spatial-resolution CIR and CASI images were classi-
fied to generate forest canopy closure estimates. These esti-
mates were used to validate the forest canopy closure estima-
tion accuracy obtained using the AVIRIS image. Reflectance
spectra extracted from the spectral-mode CASI image were
used to normalize the raw AVIRIS image to a reflectance im-
age. Classification and spectral unmixing methods have been
applied to the AVIRIS image. Results indicate that both the
classification and the spectral unmixing methods can produce
reasonably accurate estimates of forest canopy closure (within
3 percent agreement) when related statistics are extracted from
the AVIRIS image and relatively pure reflectance spectra are
extracted from the CASI image. However, it is more challeng-
ing to use the spectral unmixing technique to derive subpixel-
scale components whose reflectance spectra cannot be directly
extracted from the AVIRIS image.

INTRODUCTION

OREST canopy closure and forest species are impor-

tant variables in forest ecological studies and in forest
planning and management. While canopy closure is usu-
ally determined through field survey and airphoto inter-
pretation techniques (e.g., [4]), information about gen-
eral classes of forest species can be derived from remote
sensing imagery using classification methods. These
methods become either impractical or less accurate when
temporally variant information about forest canopy clo-
sure (e.g., seasonal change) or detailed information about
forest species are required. One of the critical constraints
for field survey and photointerpretation is the requirement
for intensive human involvement. Thus, remotely sensed
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data at a larger spatial scale could conveniently serve as
a means to extend the knowledge obtained at a local scale
to a broader spatial scale.

Image classification as an information extraction tool
has been used for more than two decades. The result of
image classification is a classified map in which each pixel
is labeled to a specific class. As pixel cells increase in
size, the proportion of ‘‘mixed pixels’’ in an image will
likewise increase and information about various proper-
ties at subpixel level will be of increasing interest. Clas-
sification algorithms can be modified to derive informa-
tion at a subpixel level (e.g., [15]). However, since
classification is usually based on image-class relation-
ships that are empirically determined on each individual
image using a training process and these relationships
change as the image acquisition conditions change, class
signatures are rarely consistent between images acquired
at different time periods or over different areas. When fre-
quent information about certain targets is needed, two
tasks are essential prior to image classification: image cal-
ibration and signature extraction. In addition to potential
errors in image calibration, a great deal of uncertainty
could be introduced into class signatures due to the sub-
jective nature of the training process.

As alternative approach to forest species identification
and forest canopy closure estimation is spectral unmixing,
which does not require the training process as is the case
with classification. Linear spectral mixture modeling has
been used to extract land-cover information at a sub-pixel
level for many years in geological applications (e.g., [2],
[51-171, [10], [26], [28], [30]). Recently, it has been used
in climatological studies [25], urban land-cover mapping
[16], and vegetation studies (e.g., [8], [20], [24], [27],
[29], [31], [33]). In linear spectral mixing, it is assumed
that a small number of materials can reproduce the ob-
served spectra when mixed together in various propor-
tions. This small number of materials are referred to as
endmembers or components. Smith e al. [31] applied the
unmixing technique to a Landsat thematic mapper (TM)
image of a desert environment to determine desert scrub
abundances. Shimabukuro and Smith [29] used a con-
strained least squares solution and a weighted least squares
solution in deriving forest shade from a Landsat multi-
spectral scanner (MSS) image. Cross et al. [8] applied
linear mixture modeling to decompose advanced very high

0196-2892/94$04.00 © 1994 IEEE




1068 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 32, NO. 5, SEPTEMBER 1994

resolution radiometer (AVHRR) images of tropical for-
ested areas and reported that the unmixing method re-
sulted in favorable estimates of forest coverage as com-
pared to the use of the supervised maximum likelihood
classification method. Quarmby et al. [24] applied un-
mixing techniques to determine crop area from multitem-
poral AVHRR images. Ustin et al. [33] applied unmixing
techniques to a hardwood rangeland environment to de-
rive information about general endmembers such as non-
photosynthetic vegetation and green vegetation using air-
borne visible/infrared imaging spectrometer (AVIRIS)
images acquired from two seasons in one year. While all
these studies require the determination of endmembers
from the image of interest prior to spectral unmixing,
Liang et al. [20] have developed a simultaneous solution
algorithm to determine the endmember spectra and the
endmember proportions for a two endmember case in
which only forest and background are present in the im-
age.

In this work, a spectral unmixing technique has been
applied to derive quantitative information about both gen-
eral land-cover types whose spectra can be determined
from the image and more specific scene components
whose spectra can only be determined using field sam-
ples. Three types of remotely sensed imagery acquired
around the same time of the year were used to test the
effectiveness of spectral unmixing in an open-canopy for-
est environment. The major objectives were: 1) to test the
spectral unmixing method using spectra extracted from a
sub-scene of an AVIRIS image, and 2) to test the extend-
ability of local-scale observations such as ground-based
spectral reflectance measurements to a larger spatial scale
via spectral unmixing. Classifications of images of higher
spatial resolution than the AVIRIS image were conducted
in order to validate the spectral unmixing procedure.

STUDY AREA

The study site is a small area located in one of the six
sites of the Oregon Transect Ecosystem Research (OT-
TER) project [22], Metolius River (44° 25'N, 121° 40'W)
on the eastern slopes of the Cascade Mountains, in west-
central Oregon. The OTTER study site, Metolius River,
is flat (slope < 2°) with an elevation of approximately
900 m. It is covered by a pure stand of Ponderosa pine
(Pinus ponderosa) with varying crown closures ranging
from approximately 25 to 50 percent. Being recently
thinned, this site has an understory primarily dominated
by bare soil with some small portions of various xerophyts
such as tuft grass (Festuca Sp.), snow bush (Ceanothus
veluntinus), and bitter root bush (Purshia Spp.). This site
has been used in a number of studies [17], [21], [32].
More detailed descriptions of the geographic location and
vegetation zone of this study site is found in [14].

Our study area covers only the fertilized part of the OT-
TER Metolious River study site. It is a triangular-shaped
area bounded by three logging roads (Fig. 1). The pure
forest stand and relatively pure background soil provide a

Fig. 1. False-color composite CASI image showing the study site bounded
by three logging road. CASI bands 3, 4, and 8 (bandpass center at 551,
679, 787 nm, respectively) are displayed using blue, green, and red color
guns, respectively. The image was acquired on May 21, 1991.

simple forest environment for testing classification and
spectral unmixing methods.

DATA ACQUISITION AND PREPARATION
Field Spectra Measurements

Some reflectance spectra used in this study were mea-
sured in the field and in a temporary laboratory setting
from May 15 to 21, 1991 (see Fig. 2). A Spectron Engi-
neering SE-590 field spectrometer was used. Field spectra
measured include those for the gravel pit, logging road,
pine needles, tuft grass, snow bush, and bitter root. The
gravel pit and logging road spectra [Fig. 2(b)] were col-
lected for calibrating the compact airborne spectrographic
imager (CASI) data to reflectance. However, only the
gravel pit has been used in CASI imagery calibration to
reflectance [13]. Other spectra [Fig. 2(a)] have been col-
lected for purposes such as spectral unmixing and for
comparison to biochemical analysis. In Fig. 2(a) the spec-
tral reflectance patterns for snow bush, and the two sam-
ples of pine needles are very similar with the snow bush
and the unfertilized pine needle spectra being the upper
and lower bounds for the fertilized pine needle spectra.
The spectra for the two tuft grass samples are equivalent
within 2 percent over the most of the spectral range ob-
served. Further, the two tuft grass samples show similar
spectral signatures to bitter root.

Some additional spectra of nonphotosynthetic materials
such as pine bark, litter, and soil (Fig. 3) taken in October
1990 [35] were also used in the spectral mixing analysis.
However, the spectral patterns for the two litter types, the
dead bitter root and the two soil types, especially for the
needle litter and the two soil types, are similar.
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Field Spectrometer Measurements (May 1991)
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Fig. 2. Reflectance spectra obtained between May 15-20, 1991 using a

Spectron SE-590 field spectrometer. (a) Laboratory spectra measured from
plant samples. (b) Spectra measured in the field.
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Fig. 3. Reflectance spectra obtained in October 1990 using a Spectron SE-
950 field spectrometer (Measured by Goward and Yang).

Compact Airborne Spectrographic Imager (CASI) Data

CASI is an imaging spectrometer for use onboard small
aircraft [3]. It has a field of view of 35° and it is operated
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in two modes, a spatial mode and a spectral mode. In the
spatial mode, it acquires images with the cross-track swath
having full spatial resolution (512 pixels) and with up to
15 spectral channels that can be selected and grouped from
among 288 spectral bands. In the spectral mode, it gen-
erates images in which each pixel provides a spectrum
from 417 to 927 nm in 288 bands with a spectral resolu-
tion of approximately 3 nm while each image line has only
39 pixels, or view directions. These 39 viewing directions
along the swath can be selected interactively by the op-
erator.

CASI data for this study were acquired on May 21,
1991. The flight height for these CASI data approxi-
mately 1860 m AGL. Eight spectral channels were se-
lected for the spatial mode according to the general spec-
tral characteristics of vegetation. These spectral channels
were centered around 440.3, 496.8, 551,4, 679.2, 711.3,
738.1, 747.9, and 787.3 nm, respectively, with spectral
bandpasses of 17.4, 7.4, 8.8, 5.3, 5.3, 5.3, 3.6, and 3.6,
respectively. The spatial resolutions of the spatial-mode
and spectral-mode CASI data are approximately 2.3 X
2.7 m and 2.3 X 9.5 m. Because of the turbulent atmo-
spheric conditions, the raw images acquired were seri-
ously distorted due to significant aircraft roll motions,
making the task to identify targets on the raw images dif-
ficult. A line correlation algorithm significantly reduced
the image distortion along the roll direction of the flight
enabling easy identification of targets on the images,
yielding a geometrically improved image, as seen in Fig.
L.

The CASI spectral-mode data were converted to radi-
ance using laboratory radiometric calibration character-
ization [36] and also to reflectances using the field-mea-
sured gravel spectra as a pseudo-invariant reflectance tar-
get [13]. The CASI reflectance imagery between 417 and
800 nm were used in this study.

Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) Data

AVIRIS data were collected over the study site on May
22, 1991 with a nominal spatial resolution of 20 X 20 m
and a flight height of 20 000 m. The field of view is 30°.
The AVIRIS digital imagery has been radiometrically
corrected to radiance units and presented in 12 bits (i.e.,
0-4095). The spectral range of AVIRIS covers 400-2450
nm at the spectral bandwidth average value of 9.8 nm
[23]. In order to make use of the reflectance spectra col-
lected from the study site, the AVIRIS radiance data must
be converted into reflectances. Since there is only one
suitable pseudo-invariant target for this study site, it is not
possible to correct the AVIRIS image to account for the
atmospheric path radiance and convert to reflectance.
Therefore, the reflectance-calibrated spectral-mode CASI
imagery was used to normalize the AVIRIS data to reflec-
tances with the following empirical linear model:

R=a-DN+b (1)
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Fig. 4. A subimage of the AVIRIS image acquired in May 1991. The
AVIRIS bands 10, 15, and 40 are displayed using the blue, green, and red
color guns, respectively.

where R is the pixel reflectance at each AVIRIS band and
DN is the corresponding digital number (radiance) of a
pixel in that band, a is the gain factor and b is the offset
accounting for the atmospheric path irradiance. Digital
numbers and reflectance spectra have been collected from
the sample locations on the raw AVIRIS and the reflec-
tance-calibrated spectral-mode CASI images, respec-
tively. To avoid the inconsistencies of the field of view
between the CASI and the AVIRIS, five sample locations
were carefully selected among pixels approximately un-
der the nadir-look directions from the CASI and the
AVIRIS images, respectively. Substituting R and DN in
(1) with the reflectance spectra obtained from the CASI
image and the digital numbers collected from the AVIRIS
image, a and b can be determined for each band using a
least-squares solution.

Color Infrared (CIR) Aerial Photograph

At the same time as the AVIRIS data were acquired,
CIR aerial photographs were taken for the study area. The
CIR photograph was digitized with a resulting spatial res-
olution of 0.6 X 0.6 m. The subimages of AVIRIS and
CIR used in this study are shown in Figs. 4 and 5, re-
spectively. For the AVIRIS image, the channel numbers
shown in Fig. 4 are 10, 15, and 40 displayed using the
blue, green, and red color guns, respectively, to yield a
false color rendition similar to that seen in the CASI im-
age of Fig. 1.

METHOD OF ANALYSIS
Spectral Unmixing Algorithm

Suppose there are / bands in a remotely sensed data set,
and there are p endmembers. Let r;, represent the spectral

Fig. 5. A subimage of the color-infrared image with two tops of the tri-
angular-shaped study area being cut off.

reflectance of kth endmember at jth band. All the reflec-
tances can be arranged in an / X p matrix R as follows:

rm T " Ty

Far I;m t 0t Iy
R = .

LATTEE 47N

For each individual pixel i, there are [ spectral responses
dyj,j=1,2, -, lrecorded by the sensor. Led d; rep-
resent all the spectral responses in an / X 1 vector form
and f;; denote the area fraction of kth endmember. All the
fractions for pixel i become a p X 1 vector f; and they
should sum to 1. The linear mixing model can be de-

scribed in the form

d; ry T "t Ip S
dp _ Far Iyttt Ty . fa
dy m Tp " Ip ﬁp
ord; = Rf; 2)
with some constraints on f;:
fezO0andXfy =1fork=1,2,---,p;
i=12,-,n 3

where n is the total number of image pixels.
In general, when a pixel is considered a mixed pixel,
all three mixture parameters in (2) are of interest:

1T
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1) p, the total number of endmembers in the mixtures,

2) the spectral identity (i.e., ry, j = 1,2, - -+, [) of
each endmember k, and

3) fi, the proportion of each endmember in each pixel.

The solution to (2) varies according to one’s knowledge
of these parameters. If 1) and 2) are known, it is possible
to determine 3) on a pixel-by-pixel basis. (Each pixel is
considered as a mixture of endmembers). This is a typical
situation where spatial proportions of various endmem-
bers are derived from remote sensing data. If 1) and 3)
are known, 2) can be obtained from more than [ fraction
vectors [18]. This method is applicable to situations where
available ground measurements of f are used to derive R.
If some endmembers are themselves mixtures or if only
1) is known, or none of the three types of parameters are
known, mixture spectra of a single pixel do not provide
enough information for one to determine all three types
of parameters. However, it is possible to estimate these
mixture parameters by simultaneously analyzing a num-
ber of pixels in which the mixing proportions vary from
one pixel to the other ([11], [12] Full, 1990, personal
communication).

In this work, we will focus on the case if 1) and 2) are
known. For this case, a direct solution to (2) can be ob-
tained with a reliable technique, singular value decom-
position (SVD), as recommended by Boardman [7]. The
SVD method is based on the theorem of linear algebra that
any [ X p(l = p) matrix R can be written as the product
of an! X p column-orthogonal matrix U, ap X p diagonal
matrix W with positive or zero elements, and the trans-
pose of a p X p orthogonal matrix V. The relationships
between R and U, W, and V are in the form

R =UWV @)

where ' denotes the transpose of a matrix [37]. The least-
squares solution to (2) can be obtained from

fi=ww'ud. 5

Adams et al. [1] suggested that image endmembers be
relatively free of contamination by other materials or other
effects such as illumination differences caused by the to-
pography. Therefore, an image endmember should be se-
lected from homogeneous areas on the image. They also
recommended that a ‘‘shade’” image endmember be used
to account for variations in lighting at all scales due to
changes in incidence angle, and variations at all scales
due to changes caused by shadows, including multipixel
shadows cast by topographic features and subpixel shad-
ows case by trees, bushes, or other objects having rough-
ness. A shade endmember can be extracted from multi-
pixel shadows.

When f is obtained, the appropriateness of the least-
squares estimation of f can be judged by the root-mean-
squared error rms.

1 ! 14 2
0 (- a5

(6)

ms =

1071

One can construct p endmember images and one error
image. However, solutions of f given by (5) do not guar-
antee that 0 < f, < 1, i.e., (5) does not meet the non-
negativity and ‘‘sum to one’’ requirements. When situa-
tions such as f; > 1 or f; < 0 occur, three factors should
be considered. First, the image endmembers should be
examined to make sure that each image endmember is ex-
actly what it is supposed to be. If image endmembers are
appropriate, and solutions like f; > 1 or f; < 0 still occur;
second, ignore those f;’s close to 0 or 1 that may be caused
by round-off errors in computer processing. Third, those
fi’s significantly smaller than 0 or larger than 1 imply that
there are other possible image endmembers that have not
been identified. When the rms is high for certain pixels,
it suggests that either the linear mixing model is inappro-
priate or a new image endmember has not been iden-
tified.

In this work, the nonnegativity and ‘‘sum to one’’ con-
straints were used to generate the final endmember im-
ages. To do so, (2) and (3) were solved simultaneously
as in [7]. The solutions are found in [19].

Image Classification

Supervised classification has been used to classify all
three types of imagery. For the CIR and the spatial-mode
CASI images, the study area has been classified into four
land-cover classes: pine, background (mixture of bare soil
and shrubs), asphalt road, and gravel pit. For the AVIRIS
image, pure pixel samples cannot be located for the class
“‘road’’ on the image. Therefore, only three classes were
used for classifying the AVIRIS image. The lack of the
road land-cover class in the AVIRIS image classification
has little effect on the result of forest canopy closure es-
timation because the spectral properties of pine and road
are very distinct. Since the AVIRIS bands are highly cor-
related to each other, only four spectral bands (bands 13,
18, 23, and 42, corresponding to wavelengths 518.9,
568.3, 617.8, and 765.7 nm, respectively) have been used
in the classification. The number of bands was limited by
the sample size because it was difficult to select enough
relatively pure pixels for each land-cover type.

In order to reduce the effect of illumination due to shade
and shadowing on the images, a normalization procedure
was used prior to image classification. This was done by
dividing the reflectance of each pixel by the total reflec-
tance at all spectral bands for the pixel. Training samples
were carefully selected from each normalized image and
training statistics were then extracted. The classification
has been done using a maximum likelihood classifier.

In order to compare the percentage of pine coverage
obtained from different types of images, the study area
bounded by the three logging roads in Fig. 1 was used as
the sample area to generate the percentage cover. For the
CIR image, small portions of the study area have been cut
off by the image boundaries (Fig. 5) and therefore only
the remaining part of the image was used to generate the
coverage estimate.
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Selected CASI Reflectance Spectra for AVIRIS Calibration
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Fig. 6. Reference spectra extracted from the spectral-mode CASI image
for AVIRIS image calibration.

Endmember Selection

Two sets of endmembers have been used. The first set
of endmembers are referred to as image endmembers be-
cause they were extracted from an image. Instead of ex-
tracting image endmembers directly from the AVIRIS im-
age, the image endmembers have been sampled and
extracted from the CASI image which were used to cali-
brate the AVIRIS image. The finer spatial resolution of
CASI image as compared to the AVIRIS image made it
easier to select relatively pure endmember spectra. The
image endmembers include pine, background, gravel pit,
and shade. The first three image endmembers were ex-
tracted from the image in the same manner as in the train-
ing stage of image classification. They are shown as back-
ground, gravel pit 1, and pine tree in Fig. 6 representing
the three major land-cover types of the study area. The
shade endmember was created so as to account for illu-
mination variations in the image. The lowest reflectance
values in the AVIRIS image have been assigned as the
reflectances for endmember shade.

The second set of endmembers are referred to as reflec-
tance endmembers because they were selected from among
the reflectance spectra collected in the field. Ideally, each
of the spectra in Fig. 2 and each of the spectra obtained
from non-photosynthetic materials in Fig. 3 could be in-
cluded in the spectral unmixing analysis. However, it is
difficult to distinguish some of those similar reflectance
spectra using the spectral unmixing algorithm. For ex-
ample, the spectral patterns and magnitudes for snow
bush, fertilized pine needle, and unfertilized pine needle
are very similar [Fig. 2(a)]. To avoid confusion in the
final unmixing results, only the fertilized pine reflectance
spectra was selected. Spectra for tuft grass 1 was arbi-
trarily selected among the spectra for two tuft grass end-
members. After some initial tests, it was found that many
endmembers resulted in O fraction. Consequently, the fi-
nal set of reflectance endmembers included pine at the fer-
tilized pine site, tuft grass, pine bark, soil, and shade.

The shade endmember is the same as in the first set of
endmembers.

RESULTS

Digital Number to Reflectance Conversion for the
AVIRIS Image

Reflectance spectra on the calibrated spectral-mode
CASI image were extracted (Fig. 6) and so were their cor-
responding digital-number spectra for five sample loca-
tions on the raw AVIRIS image (Fig. 7). The effective
CASI spectral range from 420 to 800 nm has been used.
Reflectance spectra displayed in Fig. 6 have been
smoothed by a 1 X 7 smoothing filter to yield an effective
resolution of 12 nm, which is close to the spectral reso-
lution of the AVIRIS image. In Fig. 7, a spectral range
similar to the CASI image has been used for the AVIRIS
image. The central wavelength of each AVIRIS channel
is used to select the spectral reflectances from the filtered
CASI data. As a result, those CASI reflectances whose
central wavelengths are closest to one of the AVIRIS cen-
tral wavelengths were sampled. Thus, each AVIRIS spec-
tral curve has a corresponding CASI reflectance curve with
the same number of sample points.

The sampled CASI reflectance spectra and the AVIRIS
digital-number spectra have been used to estimate the gain
and offset in equation 1 for each band. These gains and
offsets were then applied to the AVIRIS image and re-
sulted in an AVIRIS reflectance image. Fig. 8 shows the
five reflectance spectra converted from the five AVIRIS
digital-number spectra in Fig. 7. The goodness of fit
(GOF) has been determined for each AVIRIS channel be-
tween the CASI reflectance spectra and those of AVIRIS
(Fig. 9). It can be seen from Fig. 9 that at wavelengths
approximately 450 nm and longer the GOF’s are mostly
higher than 0.95, indicating that the calibration between
the AVIRIS and CASI images were reasonably well done
at those wavelengths. By comparing Fig. 8 with Fig. 6,
it can be seen that for most part of the spectral range the
conversion error is under 5 percent. After examining the
AVIRIS image, it was found that the first few channels of
the AVIRIS image were rather noisy. Therefore, AVIRIS
channels ranging from 6 to 45, except four channels (32-
36) with overlapping wavelengths between the first two
AVIRIS sensor heads, were selected for subsequent linear
unmixing analysis.

Classification of the CIR, Spatial-Mode CASI, and
AVIRIS Images

All three bands of CIR image were used in the classi-
fication. Fig. 10 shows the classification results for the
normalized CIR image. The dark tone, gray, and white
represent class background, road, and pine, respectively.
Due to the normalization, most of the shaded sides of tree
canopies have been correctly classified as pine. From Fig.
10, it can also be seen that there is little confusion among
the three classes.

T TIT
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Digital-Number Spectra from Raw AVIRIS Image
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Fig. 7. Digital-number spectra of five sample locations on the AVIRIS im-
age to be used for AVIRIS image calibration.
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Fig. 11. Land-cover classification results obtained from the CASI image.

All eight bands of the spatial-mode CASI image were
used in the classification. Fig. 11 shows the classification
results for the normalized CASI image. Black, dark gray,
gray, and white represent the gravel pit, background,
road, and pine, respectively. It can be observed from Fig.
11 that some confusion occurs between background and
road. Such confusion should not affect the estimate of pine
coverage because there is little signature similarity be-
tween pine and either road or background.

The classification results obtained from the normalized
AVIRIS image is shown in Fig. 12, where gravel pit,
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-

Fig. 12. Land-cover classification results obtained from the AVIRIS
image.

TABLE I
PINE COVERAGES (PERCENT) OBTAINED FROM DIFFERENT TYPES OF IMAGES
FOR THE SAMPLED AREA

Cover Classes CIR CASI AVIRIS
Background 50.68 39.47 54.59
Road 0.48 16.25

Pine 45.83 4428 4541

background, and pine are represented as dark, gray, and
white, respectively. In this case, not enough pixels can be
identified as samples for road. Road has been classified
as background.

Table 1 shows the percentage coverage obtained from
each type of image for three classes occurred in the study
area. It seems that the estimates for pine canopy coverage
are quite consistent even though the spatial resolutions of
these image are very different.

Linear Spectral Unmixing

The AVIRIS image was spectrally unmixed using the
constrained least-squares solution with the nonnegativity
and ‘‘sum-to-one’’ constraints. The endmember images
(fraction images) and the rms residual image were ob-
tained [Fig. 13(a)-(e)]. The range of fractions for the three
land-cover classes has been scaled from the range of [0,
1] to [100, 200]. For the shade endmember, its fraction
is subtracted from one and the difference was then
stretched to range [100, 200]. It can be seen from Fig.
13(a) that the spatial distribution of pine fractions agree
very well with the tree distribution in Fig. 4. The rms
image [Fig. 13(e)] has been linearly stretched. It can be
seen from Fig. 13(e) that the error is homogeneously dis-
tributed, indicating the entire image has been unmixed
with a similar level of accuracy. The average rms error

(b)

Fig. 13. Spectral unmixing results using image endmembers: (a) pine, (b)
background, (c) gravel pit, (d) shade, and (¢) RMSE error image.

for the study site is 0.55 percent in reflectance. This error
level is relatively low compared with the average image
reflectance values which range between 15-20 percent.
After normalizing the coverage statistics generated for the
study site, the percentage coverage for pine and back-
ground are 47.55 and 52.45 percent, respectively. The
pine canopy coverage is approximately 2-3 percent higher
than those obtained from classifying the CIR, spatial-
mode CASI, and AVIRIS images.

The finalized reflectance endmembers selected from
field spectrometer measurements are shown in Fig. 14.



GONG et al.: FOREST CANOPY CLOSURE FROM CLASSIFICATION AND SPECTRAL UNMIXING

1075

©

@

They were used in the spectral unmixing of the AVIRIS
image with the constrained least-squares method. The
fractional images for these endmembers and their root-
mean-squares error image were obtained [Fig. 15(a)-(f)].
The rms image [Fig. 15(f)] is linearly enhanced so as to
show the error distribution. While the average error for
the study site is 0.7 percent in reflectance, the bright area
in Fig. 15(f) indicates that the gravel pit area has not been
properly unmixed. This is due to the absence of a gravel
pit endmember in the set of reflectance endmembers. Al-

O]
Fig. 13. (Continued.)

though field spectra have been collected for the gravel pit
[Fig. 2(b)], it is not representative of the image. This is
evident if Fig. 2(b) and Fig. 6 are compared for the two
gravel pit spectral curves. Fortunately, the lack of an ap-
propriate gravel pit endmember did not affect the unmix-
ing results obtained for our study site outside of the gravel
pit area. It can be seen from the fraction images for pine
needle, pine bark, and tuft grass [Fig. 15(a)-(c)] that the
distribution of these endmembers is correlated with the
vegetation distribution in Fig. 4, whereas the fraction im-
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Fig. 14. Reflectance endmembers obtained from field spectra measure-
ments.

(a)

Fig. 15. Spectral unmixing results using field reflectance endmembers: (a)
pine needle, (b) pine bark, (c) tuft grass, (d) soil, (e) shade, and (f) RMSE

error image.

age for soil highlights the background, road, and gravel
pit areas in the AVIRIS image. The endmember image
shade highlights the vegetation structure as is expected.
The quantitative proportions in the study area after ex-
cluding the endmember shade through normalization are
4.73, 1.89, 45.88, and 47.49 percent for endmembers
pine needle, pine bark, tuft grass, and soil, respectively.
By summing up the proportions for photosynthetic vege-
tation, a proportion of 50.61 percent is achieved for veg-
etation coverage, which is approximately 3-5 percent
higher in comparison to the forest canopy closure esti-

mates obtained from image classification and the unmix-
ing of image endmembers. However, instead of pine
needle, endmember tuft grass is dominant in proportion.
From knowledge of the field site, this is not realistic. On
the other hand, if the endmember images are correctly ob-
tained, since there is no pixel whose fractions in the pine
needle [Fig. 15(a)] and pine bark [Fig. 15(b)], images can
sum to 100 percent, the assumption that relatively pure
pine can be identified in the AVIRIS image made for
AVIRIS image classification and unmixing of image end-
members may be wrong.

|
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Fig. 15. (Continued.)

SUMMARY AND DISCUSSION

In this paper, we have compared the classification re-
sults of forest canopy closure obtained from three remote
sensing data sources: color infrared aerial photography
(CIR), compact airborne spectrographic imager (CASI)
data, and airborne visible/infrared imaging spectrometer
(AVIRIS) digital imagery. The three data sources have
very different spatial resolutions and spectral character-
istics. The spatial resolutions are 0.6 X 0.6 m, 2.3 X 2.5

m, and 20 X 20 m for CIR, spatial-mode CASI and
AVIRIS, respectively. In order to make use of field spec-
trometer data, the spatial-mode and spectral-mode CASI
images have been converted into reflectance images using
the reflectance of gravel pits as a pseudo-invariant target.
Those channels in the AVIRIS image corresponding to the
effective spectral range of the spectral-mode CASI image
have been converted to reflectance using a linear regres-
sion technique.

A supervised maximum likelihood classification algo-
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rithm was used in the classification of the three types of
images. To reduce shadow effects, these images have been
normalized by dividing the pixel value at each band by
the total pixel values from all image bands. Comparable
forest canopy closures within 3 percent in percent cover-
age have been achieved for the study area. It should be
noted that the actual triangular-shaped study area has not
been completely included on the CIR image due to image
vignetting of a small portion at the top of the triangle.
Moreover, the study area has been delineated separately
on each individual image. Therefore the forest canopy es-
timates from these images may vary slightly from the
‘“‘real’” canopy closure. Although the study area is an
open-canopy forest environment, relatively pure land-
cover classes such as pine stand and background can be
captured in the AVIRIS image. In addition, these land-
cover classes are spectrally separable. Therefore, the
acreage estimation of these classes can be obtained
through classification with a per-pixel classifier.

By selecting image endmembers from the spectral-mode
CASI image as in the classification method, fraction im-
ages from the AVIRIS image have been obtained for the
land-cover classes such as pine, background, gravel pit,
and shade. In linear unmixing, the shade endmember has
been constructed to account for illumination variations
across the image. The pine coverage has been estimated
from the fraction image for the endmember pine. The pine
coverage percentage obtained for the study area is 2-3
percent higher than the estimates obtained by classifying
the three different types of images. Should the coverage
estimates obtained from classifying the higher spatial res-
olution images such as the CIR and the CASI be accurate,
the forest coverage estimate obtained through spectral un-
mixing of the AVIRIS image would indicate a slight over-
estimation. Compared to the maximum likelihood classi-
fication technique, which utilizes not only the average
spectra but also the covariance matrix of each class and
thus will reduce the between-class ambiguity, the spectral
unmixing algorithm only makes use of the average spec-
tra. According to a recent study, the spectral unmixing
algorithm employed in this study is sensitive to noise in
the endmember reflectance matrix [34]. Care has to be
taken in selecting endmember spectra. On the other hand,
because per-pixel image classification is based on proba-
bility or distance competing, the acreage of classes whose
proportion dominant in each pixel will be overestimated.
In this work, although the areal coverage of background
soil is only slightly higher than that of the pine, with the
maximum likelihood classifier a slight overestimation in
acreage for the background soil may still be possible.

Spectral unmixing has also been used to decompose the
AVIRIS image into fraction images of various endmem-
bers whose pure spectra cannot be obtained directly in the
image. In this work, scene components such as pine
needle, pine bark, tuft grass, and soil have been used to
spectrally decompose the AVIRIS image. Reflectance
spectra for these four endmembers were measured in the
field. Again, the same shade endmember was used. Con-

sequently, the percentage coverage obtained for endmem-
ber soil (47.49 percent) seems reasonable. From the
knowledge about the study area, however, the percentage
coverage for pine needle is obviously underestimated
while that for tuft grass was overestimated. Although the
overall unmixing results seems unrealistic, the average
rms error 0.7 percent of reflectance obtained from the un-
mixing is relatively small, implying that endmember
spectra may be appropriate for most of the image.

Errors in spectral unmixing could be from two possible
sources: the procedures to correct imagery to reflectance,
and the uncertainties in the endmember spectra measure-
ments. Although during the process of converting the
AVIRIS radiance image into a spectral reflectance image
the conversion errors for most of the AVIRIS spectral
bands were lower than 5 percent for the five sample spec-
tra used, the actual conversion error may easily exceed 5
percent. This can be minimized by carefully selecting
well-calibrated spectral bands. However, this would re-
duce the number of effective bands. A large number of
spectral bands is necessary because fine details about var-
ious scene components need to be captured and retained
during the spectral unmixing process. The relatively small
number (36) and spectral range of AVIRIS channels used
has made it difficult to allow selection of reflectance end-
members whose spectra are distinct. The uncertainties in-
volved in endmember spectra measurements may also
contribute a certain amount of errors. For instance, the
reflectance values for pine needle collected in May 1991
are different by approximately 5-25 percent at various
wavelengths from those collected in October 1990. The
pine spectra measured in May 1991 was used in this study.
However, at most of the wavelengths the spectra of pine
needle is about three times as high as the spectra for image
endmember pine (Fig. 6) that was extracted from the CASI
image; clearly, the importance of shadow in canopy re-
flectance relative to branch spectra is the primary factor
to explain this significant difference. Due to the limited
number of spectral bands used in this study, the spectral
pattern for image endmember pine is more similar to that
of the field measured tuft grass spectra [e.g., take the pine
spectra in Fig. 8, multiply by 2 and compare the result
with tuft grass spectra in Fig. (a)]. Therefore, the fraction
of tuft grass for each pixel contains a large portion of pine
needle. Such differences between spectral signature de-
terminations at the branch level relative to the canopy level
may significantly impede the use of field data for end-
member characterizations for forest canopy sites.

More research is required to fully understand whether
the linear spectral modeling and the spectral unmixing
procedure are appropriate for quantitative extraction of
scene components at a subpixel scale. To do so, simula-
tion studies, or well-controlled experiments and detailed
knowledge about a study site are necessary. Such knowl-
edge includes accurate proportion estimates of scene com-
ponents, remotely sensed images that are well calibrated
radiometrically and geometrically, and accurate spectral
measurements of scene endmembers.
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