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Abstract

In this study, we report a new technique based on gray systems theory for land-cover change prediction. Historical
land-cover data were obtained from aerial photo interpretation. Change prediction was carried out for seven land-
cover types in Claremont Canyon, Alameda County, California. The prediction results demonstrated that the

prediction technique was effective.

I. INTRODUCTION

Monitoring and prediction of land-cover/use are criti-
cal to the modeling of global change and management
of ecosystems. A large number of methods for detect-
ing changes in land surface conditions has been pro-
posed. With remote sensing, a simple but effective
method for change detection is taking the difference
of the spectral responses at the same spatial location
among a set of two or more images acquired at differ-
ent times (e.g., Kushwaha, 1990; and Franklin and
Wilson, 1991). The spectral difference between dif-
ferent times may be extended to differences of
multitemporal vegetation indices derived from re-
motely sensed data (e.g., Hashem et al., 1996). Other
techniques include multidate principal component
analysis (PCA), Kauth-Thomas transformation of
multispectral data (Kauth and Thomas, 1976) and
Gramm-Schmidt (GS) orthogonalization (Collins and
Woodcock, 1994). Most change detection methods
with PCA perform PCA transformation directly to the
original multispectral bands acquired at different
times, then analyzing several minor principal com-
ponents to determine change information (location,
patterns, and amplitude) (e.g., Collins and Woodcock,
1996, Muchoney and Haack, 1994, and Miller et al.,
1998). However, Gong (1993) followed by Parra et al.
(1996), employed PCA to difference images which led
to better change detection results. Recently, some
researchers using artificial neural network (ANN) to
predict or detect changes in grass or forest lands (e.g.,
Tan and Smeins, 1996; Gopal and Woodcock, 1996)
thought that a nonlinear technique such as the ANN
might be more applicable to describe the change be-
havior of land use/cover.

In this study, we proposed a new technique to predict
changes of land-cover types based on the gray sys-
tems theory (GST) (Yuan, 1991) and multitemporal

aerial photographs in a relative short time series. A
prediction model based on GST is to infer a system
condition from the past to the future based on known
or indeterminate information of both past and present
then to determine the system’s tendency of develop-
ment and change in the future and to provide the basis
for planning and decision-making (Yuan, 1991). The
GST prediction model may use limited data with a
very short time sequence to predict changes of some
condition while other techniques such as linear re-
gression and nonlinear neural network algorithms
perform improperly or simply do not work under this
condition. Therefore, the objective of this study is to
demonstrate the effectiveness of the GST model in
predicting land-cover changes.

II. STUDY AREA AND AERIAL PHOTOGRAPHS
Study Area

The study area is located at the Claremont Canyon,
Alameda County, California. It is a portion of the
East Bay Hills of the San Francisco Bay Area, with
an area of approximately 250 hectares. The eleva-
tion in Claremont Canyon varies from 120 m to 520
m above sea level. The mild climate and relatively
large elevation and slope range enable many vegeta-
tion types to grow in this area. Primary vegetation
types consist of Monterey pine, coastal redwood, and
Eucalyptus, cypress, bay/oak woodland, Baccharis
pitlularis, and coyote brush. In addition, the land-
cover types have been changing over time due to
changes of climate variables and human activities,
especially the latter (Sanders and Dow, 1993). Based
on the relative stability of existing land-cover types
(primary vegetation types) in the Claremont Canyon




and the interpretability of aerial photographs, we
defined seven land-cover types (Table 1) for use in
this study.

Aerial Photographs

Historical black-and-white aerial photographs cover-
ing the Claremont Canyon were used to determine
land-cover types. Five sets of black/white aerial pho-
tographs were obtained from the library of the Uni-
versity of California at Berkeley for 1947, 1957, 1969,
1979, and 1985. Nominal scales were 1:12,000 for
the photos of 1957-1985, 1:20,000 for 1947, and a 1995
digital orthophoto produced from 1: 24,000 aerial pho-
tography. The quality of these photos was medium
but it is feasible to delineate land-cover types from
them based on our knowledge gained in the field.

III. METHODS AND PRINCIPLE

Table 1. Summary of land-cover types

No. Type Description

1 MP Monterey pine stand

2 EU Eucalyptus with varying density

3 GL Grass land

4 CP Cypress stand

5 BA Baccharis Pilularis, Coyote brush

6 BO Bay laurel and oak woodland

7 RA Housing, buildings, residential areas

Mapping Land-Cover Types

Land-cover maps were generated by interpreting
aerial photographs. The procedure for mapping land-
cover types can be divided into five steps as follow-
ing.

Step 1. Digitize the aerial photos

Multidate analog aerial photos were digitized by scan-
ning them at 300 dpi with a flatbed scanner and saved
in TIFF format. Then the TIFF images were read
into the PCI image analysis system (PCI, Inc. 1997)
for rectification and cover type delineation.

Step 2. Rectify the aerial photos

Because the scales of the multidate aerial photos are
not exactly the same and their projection centers var-
ies, it is necessary to rectify them to a common refer-
ence. Rectifying aerial photos can be done either us-
ing the rigorous digital photogrammetry or a polyno-
mial transformation as used in the geometric correc-
tion (GC) module of the PCI system. The geometric
correction was carried out in two steps: polynomial
transformation and image resampling. All the

scanned analog photos were geometrically corrected
according to the digital orthophoto.

Step 3. Delineate land-cover types

A draft map was first sketched on the aerial photos
(uncorrected) according to tones, structures, and pat-
terns of defined land-cover types. This was used as
reference for the final delineation of land-cover types
on the digital version of airphotos. Using Imageworks
of PCI we delineated cover types on the geometrically
corrected aerial photos.

Step 4. Create the preliminary land-cover type map
With the MAP function in the PCI system, the result
of delineation at step 3 were converted into a prelimi-
nary land-cover map. This map was exported into
ARC/INFO and ARCVIEW systems for further pro-
cessing.

Step 5. Finalize the land-cover map

With ARC/INFO and ARCVIEW, the preliminary
land-cover type map was further processed by divid-
ing or merging map units, generating area statistics
and finalizing the map layout.

The Land-cover Prediction Model

Gray systems variable and process

In gray systems theory, an indeterminate variable is
called a gray variable. Elements in a system with
incomplete information are called gray elements.

Define a gray element as ® and its domain as 2(@®),
then® € D(®) . A gray variable is defined as xr (® ),
x®)= [a,b]lc R, R is a real number set. Given
time ¢, and s € 7, then x (& ,7)is a function of ¢, called
a gray process. The gray process completely describes
the behavior of a subject under study. x((,o))contains
complete information related to the subject of inter-
est, including the part of determinate informa-

. 0 . . .
tion, .t (,)) , and the part of indeterminate informa-

. ©) L
tion, x,,, . Its expression is

(0

b0 ©)
Yoy = X T Xau) ey

Accumulated generating operation, AGO

(0)

Ohx)20,1=1,2,..., n, may be cal-

A time series {x

culated through AGO,
¢
1) )
Ky = Z% (2)
=1

. . . ar) . . .
This generated time series .t )) is monotonically in-

creasing. This may make some indeterminate gray
variables increase their determination. Figure 1 dem-



onstrates this point with an example of population
change of a county in China. The curve in Figure 1a
clearly characterizes oscillation and stochasticality
while the curve in Figure 1b is more stable and close
to linear. AGO may also be based on the exponential
law, called exponential AGO.

Inverse AGO is the inverse calculation of AGO. It
may make the AGO series return to its original time
series. In the construction of a prediction model, it is
often used as increment information.

GM(1,1) model

A GST model with n orders and A variables is speci-
fied as GM(n, h). The GMs with various n and A val-
ues can be used in different applications and require
different data series. In this study, it is sufficient to
only use a GM(1,1) model. A brief introduction to the
GM(1,1) model is as following (Yuan, 1991).

GM(1,1) is one type of first-order differential equa-
tion as following:
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(2), then
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where a and U are parameters to be determined. Af-
ter discretizing equation (4) and generating inverse
AGO series, we have
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Figure 1. Population change across years before (a) and after (b) accumulated generating operation

(modified from[15]).



then equation (6) can be rewritten as
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Where, parameter vector d can be obtained with the
least squares method.
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Using d= [a,‘u]rto replace equation (4) and solving
the equation, we obtain
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When ¢=t+1, x(t)=x(t+1), for a one-time AGO data se-
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Therefore, the restored values of the AGO data series
may be obtained from the following restored equa-

tion (13),
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Equation (13) is a time-responding function of the
GM(1,1) model. It is also a concrete realization of the
GM(1,1) model for prediction.

The prediction procedure with the GM(1,1) model

The procedure of GST prediction with the GM(1,1)
model can be divided into six steps:

step 1. Build an original data series,
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Step 2. Conduct a one-time AGO to x'°’ with equation
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Step 3. With equations (7) and (9), construct matri-
ces B and Yn.

Step 4. With equation (11), calculate
d=[a,u]" =(B"B)"'B"Y,

Step 5. With equation (13), obtain prediction values
X k=2,3,..n n+l,.. x0.are predic-
tion values for the future.

Step 6. Analyze the prediction results.

If an original data series is not equal-interval of time,
then it needs to be converted into an equal-interval
time series before applying the GST prediction. The
equal-interval of time series may be realized by lin-
ear interpolation, or using the method proposed by
Yuan (1991). If the residual error of the prediction
value is too big to be acceptable, the predicted values
must be corrected by a residual error correction model.
The residual error can be measured by the relative
prediction error (RPE). RPE is defined as 1V1-V2|/
V1#100%, where V1, V2 are the actual and predicted
values, respectively. The relative prediction accuracy
(RPA) is defined as (1-RPE)*100%. If RPE > 15% then
the model prediction is not acceptable. The correc-
tion model is similar to equation (13). The only dif-
ference is to use the residual errors of predicted val-
ues as the original data series and follow the six steps
of GST prediction. A final prediction value (corrected)
should be the prediction value by equation (13) plus
or minus, depending on the sign of the residual error,
the correction value obtained from the correction
model.

IV. TEST AND RESULTS
Mapping Land-Cover Types

All five aerial photos were scanned into the PCI sys-
tem. The digital orthophoto of 1995, which is rela-
tively free from geometric distortion and contains
more details than the other scanned images, was cho-
sen as the master image to rectify the five other im-
ages. A total of 8 ground control points (GCPs) were
collected for the image of 1947, 10 for the image of
1957, 11 for the image of 1969, and 12 for both im-
ages of 1979 and 1985. These GCPs were used to
build second-order polynomials to register the five
scanned images to the digital orthophoto. The regis-



tration results were quite satisfactory except for the
image of 1947.

According to the definitions of the seven cover types
(Table 1), a land-cover map was produced from each
of the 6 dated aerial photos. The maps were input
into ARC/INFO and ARCVIEW systems to be edited.
Final land-cover type maps were generated (e.g., Fig-

ure 2. The percentage of land area lor sach cover
type was calculated for each aerial photo. Figure 3
clearly shows the changes of the 7 land-cover types
during the last five decades. From Figure 3, it can be
seen that cover types RA and EU increased consider-
ably in the past five decades while types BA and GL
decreased. The other three types did not change
much. It is not surprising to see the dramatic increase
of RA because human development did not stop dur-
ing thiz period (Sanders and Dow, 1993). According
to the historical record, wildfire happened frequently
in this area. Because Eucalyptus (EU)is a good burn-
ing fuel type, it i= frequently burned. People liked and
replanted the Eucalyptus because it grew faster than
most other native species, Consequently, types RA
and EU increased dramatically. These two types grew

and invaded into type BA and GL causing the reduc-
tion of grassland and brush land during the last five
decades. Although the other three types look un-
changed, there still exist oscillations from the figure,
This may be caused by delineation error or registra-
tion error or both. Figure 2 reflects the distribution
of the 7 cover types at different dates. Basically, the
land-cover maps indicate the change tendency of the

land-cover iypes.
Prediction Results

Because the original data series is not of equal-time
interval, we first interpolated the original data se-
ries into 10-year equal-intervals in time with the
method proposed by Yuan (1991). The interpolated
results (solid line) and the prediction results (dash
line) obtained from the GMi1,1) model were illustrated
in Figure 4. Both the interpolated and predicted val-
ues for each cover type at each time was normalized
Lo sum up to 100% with all seven cover types. The
prediction with GMi1,1) started from 1957 and ended
at 2007 as a “real” prediction. From Figure 4, the
interpolated results and the prediction results are

Figure 2, Land-cover types mapped from six dated aerial photos
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Figure 3. Percentage of land in each cover type de-
lineated from six dated aerial photos

quite consistent from 1957 to 1997. For the predic-
tion result of 2007, the basic tendencies are extend-
ing the trends between 1987 and 1997. Table 2 lists
the actual percentage of area for each cover type for
1995 and the prediction values for 2007. The table
also lists the relative prediction accuracy (RPA) for
each type. The RPA value of an individual type was
obtained by averaging RPAs of the five times (1957
through 1997). All RPAs of the seven cover types are
greater than 94% except for type CP with an RPA of
90%. The overall RPA equals to 95% generated from
averaging the RPAs of all the seven cover types.

V. CONCLUSIONS

In this study, the relative prediction accuracy of each
cover type by the gray systems theory prediction
model is high. The prediction technique seems to be
effective especially under the condition that we only
have relatively short data series with which some
other techniques such as the regression and neural
network algorithms would fail to predict properly.

The prediction model with the gray systems theory
(GST) built in this study, however, can only predict
the cover percentage of a particular point in time. It
can not predict the spatial distribution of the land-
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Figure 4. Percentage of land in each cover type for
interpolated (solid line) from Figure 3 and predicted
(dash line) by a GM model

cover changes. A GST model that is capable of pre-
dicting the spatial distribution of land-cover changes
is therefore desirable.
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