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Like many members of the American Ornithologists’ Union, I developed a passion for birds early 
in life and have been trying to make a living from this passion ever since. As you get to know fellow 
AOU members, particularly over drinks, you hear stories about that moment in their lives when 
they discovered this incredible feeling about birds that could not be ignored. Some of us started at 
age six or seven, others in high school or college. 

Some of us, lacking the artistic skills of David Sibley or the humor of Pete Dunne, have had to fall 
back on doing research. Our fi eld work allows us to earn a paycheck in pursuit of our passion. We 
get to see and catch and count birds in what are sometimes exciting, and hopefully always interest-
ing, places. We are paid to write reports, scientifi c papers, and books that present our results from 
the fi eld. In many cases, our work has direct or indirect implications for bird conservation.

Unfortunately, we cannot simply write papers about anything that catches our fancy. Rather, 
we need to justify our work on the basis of prior studies and present our results using up-to-date 
methodologies. For many of us, this is where the ugly concepts of hypotheses, models, and statis-
tics come into play and turn our lives of passion into actual work and sometimes drudgery. During 
my career, the profession has become more and more based on the testing of models, usually with 
associated quantitative measures. I took a single statistics course during eight years of college; my 
graduate students take at least three or four, and o� en more. One even has a Master’s degree in 
statistics to go along with her MS in ecology. More and more, our fi eld work is only as good as the 
model being tested, and the test only as good as the calculations provided.

Of course, doing fi eld work requires a lot of skill, though usually of the “natural history” catego-
ry that involves details about birds, plants, and so forth. Doing modeling and developing statistical 
methods obviously requires a high comfort level with conceptual thinking and mathematics. Few 
ornithologists are experts in both areas; fi eld people are always trying to fi gure out what is current-
ly the best way to measure their area of specialty, while modelers are trying to provide methods for 
the analytical questions posed by the fi eld people. The goal of both groups is to develop the best sci-
ence possible, with the appropriate scientifi c models tested with the best quantitative techniques. 

All these areas within ornithological research change over time, so it is diffi  cult for fi eld people 
to stay current with the latest models and for modelers to ensure that fi eld people are providing 
the best data possible and analyzing it properly. Ornithological Monograph No. 59 addresses this 
problem by serving as a bridge between fi eld biologists and modelers. It provides a state-of-the-art 
review by a set of experts of the models they consider most relevant to current avian conservation. 
It explains why these models are relevant and then shows how they can be quantitatively tested 
with fi eld data. In addition, it promotes interaction between fi eld workers and modelers, because 
models are of li� le use if they are not tested and supported with the right data from the fi eld. This 
monograph should be of great value to beginning graduate students who are planning fi eld studies 
and handy for us older folks who may need to catch up on things.

Adding to the authors’ acknowledgments, I wish to thank my students in the Avian Ecology 
Laboratory at the University of Missouri—in particular, Judith Toms, she of the degrees in both 
stats and ecology—whose reviews greatly improved this monograph. Comments from Marissa 
Ahlering, Andrew Cox, and Ernesto Ruelas Inzunza were helpful to the authors in making this as 
user-friendly as possible. 

John Faaborg
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A�
�����.—This review grew out of our realization that models play an increasingly impor-
tant role in conservation but are rarely used in the research of most avian biologists. Modelers 
are creating models that are more complex and mechanistic and that can incorporate more of 
the knowledge acquired by fi eld biologists. Such models require fi eld biologists to provide 
more specifi c information, larger sample sizes, and sometimes new kinds of data, such as 
habitat-specifi c demography and dispersal information. Field biologists need to support model 
development by testing key model assumptions and validating models. The best conservation 
decisions will occur where cooperative interaction enables fi eld biologists, modelers, statisti-
cians, and managers to contribute eff ectively.

We begin by discussing the general form of ecological models—heuristic or mechanistic, 
“scientifi c” or statistical—and then highlight the structure, strengths, weaknesses, and appli-
cations of six types of models commonly used in avian conservation: (1) deterministic single-
population matrix models, (2) stochastic population viability analysis (PVA) models for single 
populations, (3) metapopulation models, (4) spatially explicit models, (5) genetic models, and 
(6) species distribution models. We end by considering the intelligent use of models in deci-
sion-making, which requires understanding their unique a� ributes, determining whether the 
assumptions that underlie the structure are valid, and testing the ability of the model to predict 
the future correctly. Received 30 August 2005, accepted 25 November 2005.

R�
����.—This review grew out of our realization that models play an increasingly 
important role in conservation but are rarely used in the research of most avian biologists. 
Modelers are creating models that are more complex and mechanistic and that can incorporate 
more of the knowledge acquired by fi eld biologists. Such models require fi eld biologists to 
provide more specifi c information, larger sample sizes, and sometimes new kinds of data, 
such as habitat-specifi c demography and dispersal information. Field biologists need to 
support model development by testing key model assumptions and validating models. The 
best conservation decisions will occur where cooperative interaction enables fi eld biologists, 
modelers, statisticians, and managers to contribute eff ectively.

We begin by discussing the general form of ecological models—heuristic or mechanistic, 
“scientifi c” or statistical—and then highlight the structure, strengths, weaknesses, and 
applications of six types of models commonly used in avian conservation: (1) deterministic 
single-population matrix models, (2) stochastic population viability analysis (PVA) models for 
single populations, (3) metapopulation models, (4) spatially explicit models, (5) genetic models, 
and (6) species distribution models. We end by considering the intelligent use of models in 
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A�	�� �	����	
�
 	������� in conservation 
activities encounter formal mathematical and 
simulation models ever more frequently and in 
ever more diverse forms. Models are constructed 
to act as descriptions of ecological systems 
(Maynard Smith 1974). As in other sciences, such 
models have driven the development of certain 
concepts in conservation biology, such as popu-
lation viability and metapopulation dynamics. 
Mathematical and simulation models (herea� er 
“models”) have been used to predict outcomes 
based on past, current, or projected conditions, 
and they serve a useful role in synthesizing 
knowledge and guiding research. To make a 
model, one is forced to state explicitly the rela-
tions between external factors and the state of 
the system, and this quickly reveals the limits of 
our understanding. More signifi cantly, models 
have become important tools that are applied to 
policy decisions, and their use will continue to 
expand as desktop computing power grows and 
user-friendly so� ware makes modeling increas-
ingly accessible. Models, however, are neither a 
panacea nor the only useful kind of analysis for 
making conservation decisions. Intelligent use 
of models in decision-making requires under-
standing their unique a� ributes, determining 
whether the assumptions that underlie the 
structure are valid, and testing the ability of the 
model to predict the future correctly. 

The present review, and a symposium at an 
American Ornithologists’ Union (AOU) meeting 
sponsored by the AOU Conservation Commi� ee, 
grew out of our realization that models play an 
important role in conservation but are rarely 
incorporated in the research of most avian 
biologists. For example, at a recent AOU meet-
ing, only ~4% of 317 papers presented or tested 
models, compared with ~21% at a meeting of 
the Ecological Society of America held a few 

days earlier. Nonetheless, most presenters at 
both meetings employed a statistical model to 
test the signifi cance of, or evaluate pa� erns in, 
their data. Talking about models with ornitholo-
gists evokes strong reactions, as evidenced by 
the responses of AOU meeting a� endees to the 
question: “What is the fi rst thing that you think 
of when I say the words ‘model or ecological 
model’?”. Answers included “hot air,” “money 
for someone else,” “predicting the future,” “I go 
right to the Discussion and hope that they know 
what they are doing,” “people who haven’t been 
in the fi eld enough,” “computers,” “assumptions 
and generalizations,” “reality?,” and “something 
I don’t understand at all.” 

Models, unlike statistics, are not universally 
accepted as serious tools by fi eld biologists, 
perhaps because models are perceived as more 
diffi  cult to test defi nitively than other kinds of 
hypotheses (Aber 1997). When models perform 
poorly, they are typically modifi ed by chang-
ing assumptions or input values, rather than 
rejected. This reduces confi dence in model 
predictions or conclusions. Models, by their 
nature, are simplifi cations of and hypotheses 
about complex natural systems and can never 
capture all of a system’s dynamics. To avoid 
oversimplifi cation and to make models more 
useful in resolving conservation problems, one 
increases the number of parameters that need to 
be sampled, but this is likely to result in poor 
estimation of many parameter values. Poor 
parameter estimation, like oversimplifi cation, 
causes fi eld biologists to question the value 
of models. Because models are simplifi cations 
and abstractions of nature, all are expected to 
be “wrong” to some degree, which makes them 
obvious targets for a� ack when they become the 
basis of controversial decisions—as in the debate 
over conservation planning for the Northern 
Spo� ed Owl (Strix occidentalis caurina; Noon and 
McKelvey 1996a, Noon and Murphy 1997).

decision-making, which requires understanding their unique a� ributes, determining whether 
the assumptions that underlie the structure are valid, and testing the ability of the model to 
predict the future correctly.
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Despite these problems, their usefulness for 
making predictions ensures that models will 
continue to be important in decision-making. In 
conservation, predicting the future behavior of 
a population or system under diff erent manage-
ment programs is of paramount interest, and no 
credible prediction is possible without a formal 
or informal model of the system. Increased use 
of mathematical modeling in conservation is a 
manifestation of the maturation of conservation 
biology as a science. As improved computing 
power facilitates the development of ever more 
realistic models, their appeal to fi eld biologists 
grows, as do demands on fi eld biologists to pro-
duce data for parameter estimation. As a result, 
avian biologists need to be able to understand 
and evaluate models, and modelers need to 
interact with fi eld biologists. The opportunity 
exists for a productive synergism between these 
two groups to improve conservation decisions. 

This monograph reviews a set of models that 
avian biologists are likely to encounter in con-
servation. As scientists who are both modelers 
and fi eld biologists, we off er a perspective on 
models in conservation that is grounded in 
theory, application, and natural history. We 
begin by discussing the general form of eco-
logical models. We then highlight the struc-
ture, strengths, weaknesses, and applications 
of six types of models. Our goal is to present 
a diverse typology of model applications used 
in avian conservation and to indicate the kinds 
of information required for each, so that avian 
biologists may become more aware of the types 
of data that will improve the realism, precision, 
and accuracy of modeling eff orts. We conclude 
by examining how models can be used intel-
ligently to make conservation decisions, and 
how fi eld biologists and modelers can interact 
to improve the decision-making process.

T�� F��� � E�����	��� M����


Modeling natural processes consists of 
constructing a plausible symbolic representa-
tion of the dynamics of a system in the form 
of mathematical equations or rule sets (Pielou 
1981). Ecological models can take many forms, 
but most models are closely related to a priori 
hypotheses about how a system functions. In 
this sense, models project the consequences 
of hypotheses (Nichols 2001). Many types of 
models are relevant to avian research, including 

those that address optimal foraging (Stephens 
and Krebs 1986), life history (Charnov 1993), 
population dynamics (Maynard Smith 1974, 
Caswell 2001), and game theory (Maynard 
Smith 1982). Models come in many shapes and 
sizes, however, and there are multiple typolo-
gies of ecological models relevant to avian 
ecology (Jorgensen and Bendoricchio 2001, 
Nichols 2001, Gertseva and Gertseva 2004). One 
typology classifi es models as either heuristic 
or mechanistic (Pielou 1981). Heuristic models 
capture the essence of a system using a few, 
sometimes abstract, variables to predict future 
system behavior, but such models provide no 
causal explanation for the model outcomes 
expected to occur. In contrast, mechanistic 
models are designed to capture the key pro-
cesses and relationships among variables as 
they exist in nature, and to provide an expla-
nation for expected outcomes. Models used to 
project forest growth illustrate this contrast. 
Traditional models of forest growth and yield 
are heuristic—they use regression equations to 
predict future forest growth on the basis of past, 
empirically estimated, relationships (Pielou 
1981, Davis et al. 2001). The form of these equa-
tions and the regression coeffi  cients may not 
have direct biological interpretations. In con-
trast, forest succession models are mechanistic 
and a� empt to project future tree structure and 
composition on the basis of known aspects of 
the survival process, physiological tolerance 
to shading, competitive ability to obtain light 
and water, and recruitment dynamics based 
on dispersal and propagule number (Shugart 
1984, Huston 1992). These models require an 
understanding of mechanistic processes, and 
therefore depend on experimental studies of 
processes by fi eld biologists. All the model types 
we discuss in this monograph contain both heu-
ristic and mechanistic elements, but they vary 
in relative emphasis. As a model’s complexity 
increases, it can incorporate more key processes 
and becomes more mechanistic. The popula-
tion models we discuss generally represent an 
increasingly complex, increasingly mechanistic 
series (deterministic single-population, stochas-
tic single-population, metapopulation, spatially 
explicit). 

Another useful characterization of models 
distinguishes between scientifi c and statisti-
cal models (Nichols 2001, Williams et al. 
2002). Scientifi c models are used to project the 
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consequences of a hypothesis of how a system 
works, usually expressed in mechanistic terms. 
For example, a scientifi c model may predict 
how the reproductive output of a certain bird 
species will be aff ected by weather, habitat, and 
their interaction during the breeding season 
(Franklin et al. 2000). Statistical models (and 
hypotheses) follow logically from their cor-
responding scientifi c models; they project how 
measurable quantities or data should appear if 
consistent with the scientifi c model.

A fi nal useful partition of ecological models 
is based on whether their objective is to describe 
biological processes or to facilitate management 
decisions (Taylor 1995). Biological models are 
o� en mechanistic, but are not constrained in 
their design (i.e. their input parameters and 
outputs) to refl ect the concerns of managers. For 
example, a key parameter whose value would 
trigger a management response is not required 
in optimal-foraging models. Management 
models, in contrast, are specifi cally designed 
to facilitate decision-making even in the context 
of great uncertainty (Williams et al. 2002, Dale 
2003). Such models should be based on param-
eters that are easily estimated and relevant to 
managers. Diff erences in the construction of 
biological and management models may limit 
the value of some biological models for man-
agement decisions. All the models we examine 
below exhibit characteristics of both biological 
and management models. 

It is important to recognize that the model 
types discussed above are not mutually exclu-
sive and that we have not exhaustively discussed 
all possible characterizations. In addition, most 
models treated in this monograph can be classi-
fi ed within one or more typologies. For a discus-
sion of other useful characterizations of model 
types relevant to management and conserva-
tion, see Williams et al. (2002). 

Inherent diff erences between the predic-
tions or outputs of a biological model and the 
factors aff ected by management o� en inhibit 
conservation decisions. In the policy arena, our 
limited understanding of ecological processes 
and the uncertainties associated with projected 
consequences of environmental change are 
o� en used to inhibit action and protect the 
status quo. Those who oppose costly conserva-
tion decisions fi nd complex models based on 
simplifying biological assumptions to be easy 
targets. What they fail to recognize, however, 

is that any forecast of the consequences of an 
action is inherently based on some model of 
how the system works. This includes the pre-
diction of “no adverse consequences,” which 
also is based on some mental construct of the 
system. The great advantage of an intelligible 
mathematical or simulation model is that it 
makes explicit the structure, assumptions, and 
relationships among the system’s variables. 
For example, a population model can include 
various factors believed to aff ect survival and 
fecundity, such as habitat quality, habitat dis-
tribution, annual variation in food supply, and 
predation rate. With an explicit model, one can 
assess the importance of diff erent assumptions 
about relationships among factors, incorporate 
new information about processes, and test and 
refi ne the ability to predict population dynam-
ics. Models may, unfortunately, also lead to 
wrong decisions when they do not incorporate 
important processes or unintentionally use 
incorrect parameter estimates (Emlen 1989). The 
critical question is to what extent a conservation 
decision will benefi t from considering the 
results of a particular model. The answer 
depends on the model’s a� ributes.

In the following six sections, we discuss the 
a� ributes of biological models that have been 
transformed into management models and 
describe their structures, assumptions, and uses 
in conservation. We conclude with a return to 
the general topics of (1) intelligent use of mod-
els in conservation and (2) interactions of fi eld 
biologists with modelers.

D�����	�	
�	� S	����-�������	�� M���	� 
M����


Deterministic single-population matrix mod-
els (herea� er “matrix population models”) are 
among the simplest demographic models. They 
are descriptions of population dynamics con-
sisting of a set of equations (one for each age or 
stage class) that predict population size at time 
t + 1 from information on the survival, growth, 
and reproduction of individuals at time t. The 
equations are o� en formulated into a matrix, 
which is a rectangular array of numbers or 
symbols. Matrices have mathematical proper-
ties discussed below that are directly related 
to important measures of population dynam-
ics, and they are very convenient for analysis 
with computers. Matrix population models 
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have long been used in ecology (Leslie 1945, 
1948; Le� ovitch 1965; Getz and Haight 1989; 
Caswell 2001), and they have been employed to 
make management recommendations for birds 
since the late 1960s. Applications have included 
endangered species, such as the Whooping 
Crane (Grus americana; Miller and Botkin 1974) 
and California Condor (Gymnogyps californianus; 
Mertz 1971), as well as seabirds (Leslie 1966) 
and game birds (Geis et al. 1969, Anderson 
1975, Nichols et al. 1995). They became further 
established as a tool for making population 
management decisions with the incorporation 
of sensitivity analysis (e.g. elasticity, discussed 
below) (Crouse et al. 1987, Crowder et al. 1994, 
Doak et al. 1994, Silvertown et al. 1996). 

It is not appropriate to use matrix models to 
make long-term population projections unless 
it is assumed that long-term averages for the 
vital rates will experience li� le change. Matrix 
models can be used to estimate the geometric 
rate of population growth (lambda, or λ); to 
indicate population characteristics, such as the 
distribution of individuals among age classes 
(stable age distribution) or the reproductive 
value of age classes; and (as it is o� en used in 
conservation) to evaluate the infl uence of demo-
graphic rates on population change (sensitivity 
analysis) (McDonald and Caswell 1993, Caswell 
2000). If the relationship between proposed 
management actions and demographic rates 
can be determined, the ability of diff erent man-
agement actions to produce positive population 
change under current conditions can be com-
pared. Thus, a matrix population model might 
indicate whether management actions that 
increase nesting success will be more eff ective 
than management actions that increase adult 
survival, even though the model may not accu-
rately project population size over time. 

Methods other than matrix population 
models can be used to estimate lambda. The 
traditional approach uses the geometric mean 
of the ratios of population size (N) estimates for 
consecutive periods (λ = N

t+1
/N

t
) calculated from 

a time series (Morris and Doak 2002, Williams et 
al. 2002), whereas a newer approach is based on 
mark–recapture data using the temporal sym-
metry method of Pradel (1996). The temporal 
symmetry method fi ts mark–recapture models 
for open populations to capture data viewed 
simultaneously in a forward and backwards 
manner (Nichols and Hines 2002, Williams et 

al. 2002). When the capture data are viewed in 
a forward manner, the model estimates annual 
local survival (φ

t
; the probability that an indi-

vidual in the population in year t will survive 
and remain in the population in year t + 1); 
when viewed backwards, the model estimates 
the seniority probability (γ

t
; the probability 

that an individual did not enter the popula-
tion between years t and t – 1). Lambda at time 
t (λ

t
) is estimated by φ

t
 / γ

t + 1
. Neither of these 

approaches is reviewed here, because they are 
essentially statistical rather than demographic 
models and as yet do not allow incorporation 
of mechanistic processes (Nichols et al. 2000, 
Nichols and Hines 2002, Williams et al. 2002). 
Nevertheless, they can have important conser-
vation applications (Dreitz et al. 2002, Cam et 
al. 2003, Franklin et al. 2004). Both approaches 
calculate direct estimates of lambda, whereas 
matrix population models yield an asymptotic 
rate of population change based on an expected 
rate of population change modeled from an 
observed set of vital rates (Caswell 2001). 
Sandercock and Beissinger (2002) showed that 
all three approaches can yield consistent esti-
mates of lambda. Matrix population models 
have the advantage of incorporating more bio-
logical processes, but the disadvantage of some-
times yielding unrealistic values of lambda, 
because of either poor estimates of vital rates or 
a mismatch between the actual and asymptotic 
stable age distribution.

S�������� � M���	� P������	�� M����


Matrix population models are the least data-
demanding of the models reviewed here (Fig. 
1), though years of fi eld study are needed to 
construct and parameterize them well. These 
models require only: (1) an understanding of 
age, stage, or social structure (to determine ages 
or stages for analysis); (2) identifi cation of age 
or stage of fi rst reproduction; and (3) estimates 
of reproductive success and survivorship for 
the diff erent ages or stages. Ideally the deci-
sion of how many stages to use and their 
composition should be closely tied to variation 
in demographic parameters (Sauer and Slade 
1987, Caswell 2001, Pfi ster and Wang 2005). In 
practice, however, ages or stages of long-lived 
organisms are o� en collapsed into a few classes 
because fi eld studies are rarely long enough to 
measure age-specifi c rates. Nevertheless, many 
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F	�. 1. Matrix population models for (A) prebreeding and (B) postbreeding life cycles, and elasticity calcula-
tions (modified from Beissinger and Westphal 1998). Life-cycle diagrams are presented with nodes for four age 
classes: 0 (juveniles that are young of the year), 1 (subadults, hatched in the previous year, and up to 1 year of 
age), 2 (subadults from 1 to 2 years of age), and 3 (adults ≥2 years old). Individuals of each age class (indicated 
by subscripts) survive with a probability of P, but only adults reproduce with a fecundity of m. No juvenile node 
occurs in the prebreeding life-cycle diagram, because censuses are conducted just prior to the breeding season, 
when surviving young have already become 1-year-olds at a juvenile survival probability of P

0
; this appears in 

the prebreeding life-cycle diagram in the first row of the matrix. The postbreeding life cycle and matrix have an 
extra node and row, respectively, for juveniles, because censuses are conducted immediately after the breeding 
season. The first row of the postbreeding matrix models reproduction as a product of fecundity and subadult 
(P

2
) or adult survival (P

3
). The reason is that only a portion of these individuals will survive from the postbreed-

ing census until the beginning of the next breeding season, increase in age by one year, and then reproduce. 
Basic matrix calculations can easily be solved using commercially available mathematics software by one of 
two methods. The power method (McDonald and Caswell 1993) raises the matrix to a high power (e.g. A128), 
which causes the rows and columns of the matrix to converge on proportions that do not change. The stable 
age distribution is calculated from the proportions of the coefficients of the columns; the coefficients of the 
rows converge on reproductive value, which is found by dividing each coefficient by the value of the first coef-
ficient in its row. Lambda (λ), the geometric rate of annual population growth, is found by dividing any cell in 
A128 by the same cell in A127. Alternatively, matrix algebra (Caswell 2001) can be used to calculate the stable age 
distribution (right eigenvector), reproductive value (left eigenvector), and lambda (dominant or largest positive 
eigenvalue or latent root of the matrix). Elasticity requires calculating the derivative of the log of lambda with 
respect to the log of a matrix element (a

ij
) situated in the ith row and jth column of the matrix. The formula first 

requires calculation of the sensitivity (s
ij
) of the element, which is the partial derivative of lambda with respect 

to the element. The term (v
i
w

j
) is the product of the reproductive value and stable age distribution associated 

with the row and column address of a particular element, whereas the term <w,v> is the sum of all the element 
by element products of the stable age distribution and reproductive value.
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birds have complex social structures, which 
may include subadults that have yet to reach 
the age of fi rst breeding, nonbreeding adults 
old enough to breed (e.g. helpers), senescing 
adults, etc. An understanding of social struc-
ture is critical to determining the underlying 
structure of the matrix (McDonald and Caswell 
1993, Harcourt 1995). Estimates of age- or stage-
specifi c rates of fecundity and survivorship 
are usually the most important components of 
matrix population models, and the accuracy of 
their estimation is likely to have a large eff ect 
on model outcomes. Most matrix population 
models of vertebrates are constructed only 
for females, because male fecundity is o� en 
unknown. Thus, rates are usually expressed on 
a per-female basis. Nevertheless, two-sex mod-
els can be built (Caswell 2001).

Caswell (2001) and McDonald and Caswell 
(1993) present detailed treatments of the 
structure of matrix population models and the 
calculations involved, so we summarize these 
only briefl y here. The underlying structure of 
a matrix model is the life cycle of the organ-
ism, which can be depicted in a diagram as a 
set of nodes for stages and arcs for transitions 
between stages (Fig. 1). In the matrix, a row 
is required for each stage- or age-class of the 
modeled population, and columns track the 
contribution of each stage or age to the row. 
The fi rst row of the matrix accounts for rates of 
production and recruitment of young into the 
population, and the other rows present rates of 
survival within stages or the transition from one 
stage to another. Correct construction of matrix 
models critically depends on the time at which 
the population is censused in relation to the 
time of reproduction (Noon and Sauer 1992).

Many matrix analyses are easily done 
using commercially available mathematics 
so� ware (e.g. MATLAB, MATHEMATICA, and 
MATHCAD) requiring only the input of the 
matrix followed by a few commands (Caswell 
2001, Morris and Doak 2002). Once the matrix is 
constructed, it is easy to calculate (1) the annual 
rate of population growth (lambda), which 
describes the rate of change for each stage-
class and the population once the population 
has reached a stable age distribution; (2) the 
stable age distribution, which is the propor-
tion of individuals in each age- or stage-class if 
the rates of survival and reproduction remain 
unchanged; and (3) reproductive value, which 

is the expected contribution of an individual in 
a particular age- or stage-class to future popu-
lation growth. Nevertheless, the mathematical 
terminology and processes involved in matrix 
algebra can be confusing to those unfamiliar 
with them (Caswell 2001). An introduction 
to the calculations is provided in Figure 1; 
McDonald and Caswell (1993) and Morris and 
Doak (2002) give more detailed, but readable, 
presentations. 

Sensitivity can be analyzed in several ways 
(Caswell 2000, 2001), but elasticity is employed 
most frequently (Fig. 1). Elasticity is the pro-
portional change in annual population growth 
(lambda) resulting from a proportional change 
in a matrix element (de Kroon et al. 1986; de 
Kroon et al. 2000). Elasticity values for the ele-
ments of matrix population models have the 
convenient property of summing to 1.0 and give 
a proportional contribution to the total sensitiv-
ity of lambda. Thus, small changes in the vital 
rates that compose a matrix element having 
a large elasticity value will produce a much 
greater eff ect on the rate of population growth 
than equally small changes in the vital rates that 
comprise a matrix element having a small elas-
ticity value. However, the fi rst row of matrix ele-
ments is calculated as a product of both survival 
and fecundity (Fig. 1). Thus, lower-level elas-
ticities must be calculated to partition elasticity 
among survival and fecundity (Wisdom and 
Mills 1997, Caswell 2001). When a vital rate is 
found on more than one matrix element, such as 
adult survival, lower-level elasticity values can 
be added to obtain a total elasticity value for the 
vital rate, but the elasticity values will no longer 
sum to 1.0. For all demographic subcomponents 
found only on the same element, lower-level 
elasticity values will take on the same value. 
In birds, for example, fecundity is frequently 
calculated as a product of the proportion of 
females breeding, proportion of nests fl edging 
young, and number of female young fl edged 
per successful nest. This can limit the useful-
ness of elasticity in instances where the goal is 
to understand the eff ect of changing a particular 
subcomponent of reproduction (e.g. proportion 
of nests fl edging young). 

Two less frequently used but equally valu-
able approaches to analyzing the sensitivity 
of matrix population models are the life-table 
response experiment (LTRE) and life-stage 
simulation analysis (LSA). The LTRE is an 



ORNITHOLOGICAL MONOGRAPHS  NO. 598

analytical approach that extends elasticity by 
incorporating specifi c changes to vital rates 
(Caswell 1996b, 2000). It compares the contribu-
tions of specifi c changes in particular vital rates 
with diff erences in lambda between a “mean” 
or “control” matrix and a “perturbed” or “treat-
ment” matrix. The LTRE does this by taking the 
product of the change in the vital rate caused 
by perturbation and the sensitivity of lambda 
to changes in that rate (Caswell 2000, Mills and 
Lindberg 2002). Thus, LTRE can compare the 
eff ects on lambda of the overall contribution of 
changes in vital rates. Although frequently used 
to analyze plant population dynamics (Bruna 
and Oli 2005, Brys et al. 2005, Griffi  th and 
Forseth 2005), LTRE has rarely been applied to 
birds; for a notable exception, see Cooch et al. 
(2001). Life-stage simulation analysis is a simu-
lation-based approach to sensitivity analysis. 
It evaluates the eff ect on lambda of changes in 
vital rates by constructing hundreds of replicate 
matrices randomly drawn from specifi ed distri-
butions for each vital rate (Wisdom and Mills 
1997, Wisdom et al. 2000). Lambda is calculated 
for each matrix, and the coeffi  cient of deter-
mination (r2) between the value of each vital 
rate and lambda is found; this reveals which 
vital rate accounts for the greatest variation in 
the growth rate for all simulations when rates 
change simultaneously. 

U
� � M���	� P������	�� M����
 	� 
C��
�����	��

Use of deterministic matrix population 
models in management decisions has grown 
rapidly since the development of elastic-
ity analysis. Matrix analyses were used to 
estimate rates of population growth for log-
gerhead sea turtles (Care� a care� a) to compare 
the eff ects of diff erent management options; 
these indicated that turtle-excluder devices 
are more eff ective than in situ and ex situ egg 
protection (Crouse et al. 1987, Crowder et al. 
1994, Grand and Beissinger 1997). Similarly, 
analyses of elasticity were used to evaluate the 
eff ects of proposed management techniques on 
lambda in Red-cockaded Woodpeckers (Picoides 
borealis; Heppell et al. 1994) and Greater 
Prairie Chickens (Tympanuchus cupido pinnatus; 
Wisdom and Mills 1997). Matrix models were 
applied to Marbled Murrelets (Brachyramphus 
marmoratus) to estimate lambda and to compare 

the ratio of juveniles to a� er-hatch-year birds, 
which is an indirect estimate of recruitment 
(Peery et al. 2006a), with model estimates of 
productivity needed for stable populations 
(Beissinger 1995a, Beissinger and Nur 1997, 
Peery et al. 2006b). Matrix models were used to 
evaluate acceptable rates of mortality required 
to re-establish viable populations of California 
Condors (Meretsky et al. 2000), to analyze risks 
of decline in and eff ects of long-line fi sheries on 
Amsterdam Albatrosses (Diomedea amsterdamen-
sis; Inchausti and Weimerskirch 2001), to specify 
the eff ects of feral cats on island-nesting Black-
vented Shearwaters (Puffi  nus opisthomelas; Kei�  
et al. 2002), and to determine habitat-specifi c 
diff erences in population growth in Peregrine 
Falcons (Falco peregrinus; Kauff man et al. 2003) 
and ptarmigans (Lagopus spp.; Sandercock et 
al. 2005). Matrix models have also been used 
to compare the effi  cacy of population control 
options for Snow Geese (Chen caerulescens; 
Mills and Lindberg 2002) and Brown-headed 
Cowbirds (Molothrus ater; Ci� a and Mills 1999). 
In these two applications, as well as in the 
Greater Prairie Chicken example (Wisdom and 
Mills 1997), LSA was employed as an alterna-
tive form of sensitivity analysis to indicate how 
potential variation in vital rates was aff ecting 
the population dynamics. Hoekman et al. (2002) 
also used multiple approaches to explore the 
sensitivity of Mallard (Anas platyrhynchos) life-
cycle stages. Cooch et al. (2001) used LTRE to 
analyze the demographic responses of Lesser 
Snow Geese (Anser c. caerulescens) to changes in 
food abundance.

Although matrix population models require 
the least data of all the modeling approaches 
reviewed here, developing accurate and precise 
estimates for vital rates and constructing the 
matrix is not a trivial ma� er. First, accurate esti-
mates of fecundity and survival based on long-
term studies are rarely available for endangered 
species (Noon and Sauer 1992, Beissinger and 
Westphal 1998). Survivorship is o� en the most 
diffi  cult demographic rate to measure accu-
rately, because it must be distinguished from 
the probability of resighting (Nichols 1992). 
Complex statistical techniques have been devel-
oped to yield accurate estimators of survival 
and to test for diff erences among age- or stage-
classes (Lebreton et al. 1992). Unless the prob-
ability of resighting is very high, they usually 
require large samples of marked individuals 
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followed over at least three years to estimate 
the probability of resighting and survivorship 
for a single year. It is unfortunate that sur-
vival estimates can be problematic, because 
sensitivity analyses suggest that population 
change in most long-lived vertebrates is o� en 
most aff ected by changes in adult survivorship 
(Lande 1988b, Pfi ster 1998). For example, Sæther 
and Bakke (2000) compared elasticities of 49 
species of birds and found that adult survival 
tended to have the greatest eff ect on population 
growth, though the contribution of fecundity 
increased with increasing clutch size. Second, 
the structure and values in the matrix depend 
on whether it is parameterized as a prebreeding 
or postbreeding model, or as a birth-fl ow (births 
occur continuously over the projection interval) 
or birth-pulse (births occur during a short 
breeding season within the interval) model 
(Noon and Sauer 1992, Caswell 2001). The larg-
est diff erences are in the calculation of realized 
fecundity, in the fi rst row of the matrix (Fig. 1).

Matrix population models are o� en employed 
to recommend management strategies, but 
results need to be interpreted sensibly. These 
models are simple descriptions of population 
dynamics. Matrix population models rarely 
a� empt to incorporate processes that produce 
the observed survival and reproductive rates, 
and they o� en ignore the eff ects of uncertainties 
in parameter estimation (Wisdom et al. 2000), 
covariation among vital rates (van Tienderen 
2000), density dependence (Grant and Benton 
2000), and stochasticity (de Kroon et al. 2000). 
This limits the appropriate uses of these models 
in several ways. First, sensitivity analyses can 
indicate which vital rates or stages most aff ect 
model outcomes or require more study for be� er 
parameter estimation, and they can be used to 
identify the management strategy that may lead 
to the fastest population recovery. However, 
sensitivity analyses do not indicate which fac-
tors are causing populations to decline (Green 
and Hirons 1991, Beissinger and Westphal 
1998). The la� er information requires compara-
tive, behavioral and experimental approaches 
(Lande 1988b, Caughley and Gunn 1996, Norris 
2004, Peery et al. 2004), or comparison of model 
trajectories with real population trajectories 
(Hitchcock and Gra� o-Trevor 1997, Peery et al. 
2004). In addition, recovery will require more 
time in populations that are declining because 
of limiting factors that operate on elements with 

low sensitivity. Moreover, sensitivity analy-
sis does not indicate the degree to which it is 
feasible to infl uence a vital rate with diff erent 
management options and does not incorporate 
the cost per unit change in lambda of particu-
lar management options, a metric that may be 
important to decision-makers (Nichols and 
Hines 2002). 

Elasticity analysis has also been criticized 
because it can lead to inconsistencies in evalu-
ating demographic rates, depending on how 
they are scaled (Link and Doherty 2002). The 
proportional changes of an elasticity analysis 
are unitless and calculated on a log–log scale. 
However, demographic rates are measured on 
diff erent scales (e.g. annual survival varies from 
0 to 1, whereas annual fecundity values may 
exceed 10 in ducks and thousands in fi shes and 
invertebrates). Link and Doherty (2002) argue 
that the log–log scale is mainly appropriate 
for transformation of probabilities (bounded 
by 0 and 1), but should be replaced with 
variance-stabilized transformations when ana-
lyzing matrices that contain elements outside 
that range. See Doherty et al. (2004) for a recent 
application of this approach with a seabird. 
Because of these and other limitations, Norris 
and McCulloch (2003) and Norris (2004) recom-
mend a greatly reduced role for elasticity analy-
sis in infl uencing management decisions, and 
instead suggest analyzing the feasible eff ects 
of management on vital rates and the resulting 
population growth rates. This kind of scenario 
analysis provides a direct way to evaluate the 
eff ects of management on population growth. 
However, the validity of the insights depends 
upon the ability of management to achieve the 
demographic improvements specifi ed in the 
scenarios being evaluated. 

A second limitation on use of sensitivity anal-
yses is that they are not value-free, but depend 
on the vital rates used in the matrix (Caswell 
1996a). Changes in values used in the matrix 
may sometimes shi�  the rankings of elasticity 
results (Mills et al. 1999, Wisdom et al. 2000). 
Furthermore, if a demographic rate is depressed 
by the eff ects of a limiting factor, its matrix 
element(s) will have a smaller elasticity value. 
This does not mean that factors or stages asso-
ciated with this element are less important for 
management than other elements. For example, 
elasticity values for the Mariana Crow (Corvus 
kubaryi) on Guam indicated an overwhelming 
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importance of adult survivorship, but success-
ful reproduction has rarely occurred during the 
past decade because of nest predation by the 
brown tree snake (Boiga irregularis) (National 
Research Council 1996, Beissinger 2000). The 
model was based on low fecundity values 
observed under current conditions, not the 
presumably higher but unobserved values that 
prevailed before the invasion of the snakes. 
Recovery strategies that addressed only adult 
survivorship would miss the main cause of 
decline, which was poor reproduction caused 
by snake predation on eggs and nestlings. 

A third limitation is that population estima-
tors derived from deterministic matrix analyses 
assume that demographic rates are constant, an 
assumption that is violated to some extent in all 
matrix applications. For example, ecosystems can 
experience severe environmental fl uctuations 
on relatively short cycles as compared with 
the generation time of birds (e.g. El Niño), and 
these can greatly aff ect demography (Beissinger 
1986, 1995b; Grant 1986). The eff ects of violating 
this assumption depend on how much varia-
tion in demographic rates occurs from year to 
year (Wisdom and Mills 1997, Caswell 2001). In 
addition, positive population growth rates do 
not indicate that a population is secure, because 
environmental variation and catastrophes can 
cause large fl uctuations in population size and 
result in a high chance of extinction (Goodman 
1987, Tuljapulkar 1989, Lande 1993, Mangel and 
Tier 1994, Sæ ther et al. 2005). Stochastic single-
population models are a more complex alterna-
tive to deterministic models, and they are more 
realistic in that they incorporate variation in 
demographic rates. 
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Stochastic demographic models of single 
populations are another way to describe popu-
lation dynamics. These models usually do not 
incorporate the processes that produce particu-
lar rates of survival and reproduction, but to 
some extent they simulate the eff ects of these 
processes by including annual variation in vital 
rates or lambda. Stochastic models are used to 
make long-term population projections, espe-
cially in the context of population viability anal-
ysis (PVA; Shaff er 1981, 1987; Beissinger and 
McCullough 2002). A population is projected for 

50, 100, or more years into the future by allow-
ing lambda or demographic rates to change for 
each time step (usually one year); the method 
is Monte Carlo, which samples rates randomly 
from predetermined distributions (Fig. 2). Each 
run of a stochastic model follows a unique tra-
jectory and yields a diff erent ending population 
size, because the lambdas or demographic rates 
change randomly with each time step. Whereas 
a deterministic matrix population model 
produces a single-population projection that 
changes at the rate of lambda, stochastic single-
population models yield probabilistic results. 
Models must be run 500–1,000 times to explore 
the full range of parameter values so that results 
portray the distribution of possible ending pop-
ulation sizes (Harris et al. 1987, Burgman et al. 
1993, Morris and Doak 2002). 

Results from stochastic single-population 
models can be summarized in several ways 
(Burgman et al. 1993, Beissinger and Westphal 
1998). The most common for evaluating popu-
lation viability is the proportion of runs that 
end at population size zero (“extinction” rate), 
or at a small size, such as ≤25 individuals 
(“quasi-extinction” rate). No standard interval 
or extinction rate defi nes a viable population, 
but intervals of 50–100 years and extinction 
rates <5% are commonly used (Ralls et al. 2002, 
Reed et al. 2002). A second result computes 
the expected “time to extinction,” which is the 
mean or median year of extinction for popula-
tions that went extinct. A third approach is to 
calculate the mean and standard deviation for 
population size at each interval. Perhaps the 
most complete descriptor of model results is 
to plot the cumulative probability function 
for ending population size (Fig. 2D). This is 
known as the quasi-extinction function and 
is a basic form of risk analysis (Ginzburg et 
al. 1982, Burgman et al. 1993). The minimum 
viable population size (MVP) can be found by 
changing the initial population size to fi nd the 
smallest size that had a 95% chance of remain-
ing extant at the end of the period evaluated 
in the simulation (Shaff er 1981, Soulé 1987). 
Minimum viable population sizes from mod-
els are rarely used in management contexts, 
because of the diffi  culty in accurately forecast-
ing risks of extinction (Ralls and Taylor 1997, 
Reed et al. 2002), though estimates sporadically 
appear in the published literature (Harcourt 
2002, Reed et al. 2003). 
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Stochastic single-population PVAs can be 
built as either unstructured or structured mod-
els. Unstructured models use estimates of the 
mean and variance of lambda to project popula-
tion fl uctuations into the future by employing 
Monte Carlo techniques to sample lambdas 
randomly from predetermined distributions. 
They contain no structure or information 
about individuals (e.g. ages, stages, or sizes). 
Unstructured models are usually parameterized 

from a time series of counts or estimates of 
population size for consecutive periods (λ = 
N

t + 1
/N

t
) or from the log of the counts (Morris 

and Doak 2002, Williams et al. 2002); the la� er 
measure is used to calculate the stochastic rate 
of population growth (µ), which is equivalent 
to r (exponential rate of increase) rather than 
lambda (geometric rate of increase). The mean 
and variance of µ can be used in analytical 
models to yield estimates of the probability that 
a population of a given size will reach any size 
threshold at some number of years in the future 
based on the diff usion approximation (Dennis 

F	�. 2. Simplified example of the structure and outcomes from a stochastic single-population PVA model 
(from Beissinger and Westphal 1998). (A) The prebreeding life-cycle diagram gives the model age or stage struc-
ture (see Fig. 1). (B) The basic flow of events of the prebreeding life cycle structures the model. Rates for fecun-
dity (m) and survival (P) are randomly chosen anew for each time step (from predetermined distributions) and 
used in matrix calculations to project the population size at the next census (i.e. year). (C) The initial population 
is projected over many years in a single iteration of the model, as shown by any of the trajectories. Projections 
are repeated 500–1,000× to simulate different possible population trajectories. (D) Outcomes for various man-
agement options (e.g. current conditions or “as is,” increasing fecundity, or decreasing mortality) are deter-
mined, such as the quasi-extinction function, extinction rate, time to extinction, and average population size. 
The quasiextinction function incorporates the population size from all projections at a specified interval and is 
determined by calculating the cumulative probability for populations ending less than or equal to a particular 
size at the specified time interval. The extinction rate is where the function intersects the y-axis.



ORNITHOLOGICAL MONOGRAPHS  NO. 5912

et al. 1991, Foley 1994, Holmes 2004). Although 
the concepts behind these applications of sto-
chastic calculus are sophisticated, Morris and 
Doak (2002) provide very accessible details for 
doing the calculations. 

Parameterizing structured single-population 
models requires about twice as many rates to be 
estimated than are needed for matrix popula-
tion models (Beissinger and Westphal 1998), 
though many of the additional rates can be 
derived from the same fi eld data. The basic skel-
eton of structured stochastic population models 
is similar to that of deterministic matrix models, 
so they require the same estimates of mean age- 
or stage-specifi c survival and fecundity. In addi-
tion, to model the eff ects of demographic and 
environmental stochasticity, models require 
estimates of variance in fecundity and survival 
for each age- or stage-class. Demographic 
stochasticity refers to chance events in birth or 
death rates a� ributable to population size. For 
example, the probability of survival for a partic-
ular age-class may be 60%, but each individual 
either lives or dies. The variability that results 
from this process represents demographic 
stochasticity. Demographic stochasticity can be 
modeled by choosing the number of draws from 
a binomial distribution equal to the population 
size, with probabilities chosen from a range 
of realistic values for the demographic rate 
of interest. Environmental stochasticity refers 
to changes in demographic parameter values 
caused by fl uctuations in the environment 
that aff ect all individuals similarly (e.g. annual 
variation in weather or resources; Lande 2002). 
Accurate modeling of environmental stochastic-
ity is diffi  cult; it requires knowledge of the rela-
tionship between environmental conditions and 
vital rates and their variance over the full range 
of conditions encountered.

Stochastic single-population models should 
also include additional complexities, namely 
some method of incorporating density depen-
dence and carrying capacity and the frequency 
and eff ects of catastrophes. Carrying capacity 
sets an upper limit on how large populations 
can grow and density dependence aff ects popu-
lation growth rates. Models without such lim-
its o� en overestimate population persistence 
and underestimate maximum growth rates 
(Ginzburg et al. 1990, Sabo et al. 2004). Various 
density-dependent functions can be used to 
model the eff ects of approaching carrying 

capacity, or a population ceiling size may be 
designated that acts as an upper boundary for 
population trajectories (Burgman et al. 1993, 
Foley 1994, Sabo et al. 2004). Structured stochas-
tic single-population models can also incorpo-
rate stochastic processes that may occur when 
populations become small, such as Allee eff ects 
(Courchamp et al. 1999, Stephens et al. 1999) or 
inbreeding (Charlesworth and Charlesworth 
1987, Lande 2002). Catastrophes are a form 
of environmental variation that can be distin-
guished from environmental stochasticity by 
the magnitude of eff ects on demography. They 
may result in large population declines and 
can greatly increase the chance of extinction 
(Mangel and Tier 1994), but are not necessarily 
rare events. Physical forces that strongly aff ect 
demography, such as droughts and fl oods, 
can occur in short intervals (e.g. 5–7 years) 
and in predictable cycles (Beissinger 1986). 
Determining the predictability of important 
environmental factors (Colwell 1974, Stearns 
1981, Beissinger and Gibbs 1993) is required to 
assess whether models should allow demogra-
phy to vary entirely stochastically or with an 
underlying form of quasiperiodicity.
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Stochastic single-population models have 
frequently been used to estimate the likelihood 
of extinction for wild populations and, on that 
basis, to make management recommendations. 
Shaff er (1981, 1983) fi rst used PVA on Grizzly 
Bears (Ursus arctos) in Yellowstone National 
Park, though stochastic population models had 
occasionally been used to explore the demog-
raphy of endangered and harvested birds 
(Nichols et al. 1980, 1995). A structured stochas-
tic single-population model was used to predict 
that Red-cockaded Woodpeckers in the Georgia 
Piedmont and Piping Plovers (Charadrius melo-
dus) in the Great Plains had high likelihoods of 
extinction within 100 years (Ryan et al. 1993, 
Maguire et al. 1995). These models have also 
been used to evaluate the necessity of removing 
Puerto Rican Parrots (Amazona vi� ata) from the 
wild for captive breeding (Lacy et al. 1989), the 
viability of captive and reintroduced popula-
tions of Bearded Vultures (Gypaetus barbatus) in 
the Alps (Bustamante 1996), threats to an island 
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population of Capricorn Silvereyes (Zosterops 
lateralis chlorocephala; Brook and Kikkawa 1998), 
the eff ect of fi sheries on Amsterdam Albatrosses 
(Inchausti and Weimerskirch 2001), and risks to 
Balearic Shearwaters (Puffi  nus mauretanicus; Oro 
et al. 2004). Unstructured single-population 
models have been used to examine life-history 
correlates of time to extinction in birds (Sæ ther 
et al. 2005); and a variation of this approach, 
the population prediction interval (Sæ ther and 
Engen 2002), has been used to examine risks to a 
declining population of Barn Swallows (Hirundo 
rustica) in Europe (Engen et al. 2001). 

Like deterministic matrix models, structured 
stochastic models of single populations are 
most useful for examining the eff ects of dif-
ferent management options (Fig. 2D). This is 
o� en done by comparing population projec-
tions of diff erent management scenarios and 
by sensitivity analysis, which, unlike deter-
ministic matrix models, cannot be calculated 
analytically. The conventional method of sen-
sitivity analysis for stochastic PVA models is 
to determine the change in the probability of 
extinction (or another model output) in relation 
to fi xed-percentage changes in a model param-
eter (Beissinger 1995b). This involves adjusting 
model parameters one at a time, conducting 
many iterations for each new parameter set, and 
comparing the results with the average outcome, 
which is calculated by se� ing all input param-
eters to their mean value. For example, Reed 
et al. (1998) constructed a structured stochastic 
PVA model for the Hawaiian Stilt (Himantopus 
mexicanus knudseni) and found that popula-
tions were unlikely to go extinct. Sensitivity 
analysis indicated that model outputs were 
most aff ected by changes in nesting failure and 
adult survival—factors that managers could 
minimize by maintaining predator control and 
limiting water-level fl uctuations. Furthermore, 
the results were insensitive to changes in the 
probability of catastrophe and density depen-
dence. In addition to conventional sensitivity 
analysis, sensitivity can be evaluated by exam-
ining the eff ect on model outputs of changing 
each model parameter by a fi xed percentage of 
its range (relative sensitivity), and by analyz-
ing the impacts of input parameter values on 
the likelihood of extinction or quasi-extinction 
using logistic regression (Cross and Beissinger 
2001). The la� er approach is perhaps the most 
useful, because it can examine interactions 

among input parameters and changes to model 
structure. Cross and Beissinger (2001) recom-
mended employing several kinds of sensitivity 
analyses to understand how input parameters 
aff ect model outcomes, but suggested compar-
ing management scenarios to evaluate the effi  -
cacy of potential management options.

Stochastic models provide a more fl ex-
ible approach than deterministic ones, because 
demographic rates need not be restricted to 
current conditions. For example, the eff ects of 
silvicultural practices on a threatened mammal 
were examined to estimate how the likelihood 
of extinction was aff ected by changes in carrying 
capacity (Lindenmayer and Possingham 1996). 
Similarly, stochastic modeling examined how the 
interval between low water conditions aff ected 
the viability of Snail Kites (Rostrhamus sociabilis) 
in the Florida Everglades (Beissinger 1995b). 
Demographic rates were partitioned among 
diff erent environmental states (i.e. drought, lag, 
and fl ood years), and the periodic sequence of 
environmental states dictated vital rates.

Results from stochastic single-population 
models should be interpreted carefully, of 
course. Although PVA models supplied with 
adequate data have the potential to track the 
average short-term trajectory of a population 
with accuracy (Brook et al. 2000b), these models 
are unlikely to produce accurate predictions 
of the likelihood of extinction (Ludwig 1996, 
1999; Beissinger and Westphal 1998; Groom and 
Pascual 1998; Fieberg and Ellner 2000). First, 
demographic data are o� en inadequate, and 
estimates of vital rates are frequently imprecise 
and are based on studies too limited in duration 
to estimate properly the mean and variance. 
Analyses of long-term data sets of a variety of 
animals have shown that asymptotic estimates 
of the variance in population size, if they occur 
at all, may require at least 8–20 years of sampling 
(Pimm and Redfearn 1988, Pimm 1991, Ariño 
and Pimm 1995) Reasonable estimates of vari-
ance in vital rates for birds probably require at 
least several generations of study, which could 
easily exceed 10–20 years for many species. 
Second, estimates of variance in vital rates and 
lambda derived from fi eld studies include sam-
pling error, which should be discarded because 
it is caused by errors in parameter estimation, as 
well as the annual (environmental) variation of 
interest (Nichols et al. 1994, Staples et al. 2004). 
Studies of Semipalmated Sandpipers (Calidris 
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pusilla) found that sampling error contributed 
nearly as much to the total variance in annual 
survivorship as temporal variation (Hitchcock 
and Gra� o-Trevor 1997). Methods are avail-
able to partition a vital rate’s total variation 
into components caused by sampling error and 
process error (Gould and Nichols 1998, White 
et al. 2002). 

Third, the primary prediction from stochastic 
single-population models, the probability of 
extinction, is diffi  cult to validate because these 
models incorporate stochastic processes. We 
cannot know which of the hundreds of simu-
lated population trajectories will most resemble 
the trajectory of the actual, unreplicated popu-
lation. Comparing the model’s average popula-
tion projection with a time series of historical 
population trends provides a way to examine 
how well the model captures the short-term 
dynamics of the system (Brook et al. 2000b). 
But it does not verify the value of stochasticity 
or other variables used in the model that are 
responsible for diff erences among model runs. 
Furthermore, acceptable levels of risk always 
occur at one tail of the distribution of possible 
outcomes (e.g. <5% chance of extinction in 100 
years), which makes the accuracy of predictions 
particularly diffi  cult to evaluate (Ludwig 1996, 
1999). Model assumptions or secondary predic-
tions, such as population size or estimates for 
means and variances of vital rates, are more fea-
sible to test (McCarthy et al. 2001, Lindenmayer 
et al. 2003). Fourth, diff erences in model struc-
ture can have strong eff ects on management 
recommendations resulting from model output. 
Models with diff erent structures can reproduce 
the same population dynamics in the absence of 
management, but may predict diff erent eff ects 
of management regimes (Pascual et al. 1997, 
Gerber and VanBlaricom 2001, La Montagne 
et al. 2002). Also, diff erent computer programs 
can produce diff erent estimates of viability 
from the same data because of diff erences in 
the ways of modeling density dependence and 
sex ratio (Mills et al. 1996, Brook et al. 2000a). 
Incorporating density dependence may increase 
model realism, but requires additional valida-
tion to determine whether density dependence 
is modeled accurately. Even when data appear 
to be adequate, stochastic single-population 
models can make large errors in estimating the 
rate of extinction (Taylor 1995, Ludwig 1999, 
Belovsky et al. 2000, Fieberg and Ellner 2000). 

Taken together, these concerns strongly sug-
gest that one should place limited confi dence 
in the extinction estimates generated by these 
models. Stochastic single-population models 
are best employed in conservation decisions 
by comparing the diff erences in relative rates 
among management options incorporated 
into the model rather than basing policies 
on the absolute rates of extinction predicted 
(Beissinger and Westphal 1998, Reed et al. 2002, 
McCarthy et al. 2003, Lo� s et al. 2004). This was 
the basis for comparing conservation strategies 
based on diff erent sizes and confi gurations of 
reserves for the Northern Spo� ed Owl in the 
Pacifi c Northwest (Noon and McKelvey 1996b). 
Population viability analysis models also benefi t 
from incorporating uncertainty directly, using 
Bayesian techniques (Goodman 2002, Taylor 
et al. 2002, Wade 2002) or exploring the role 
of estimation error and uncertainty on model 
outcomes (Parysow and Tazik 2002). They also 
benefi t from using an explicit decision analysis 
framework (Possingham et al. 2002, Drechsler 
and Burgman 2004). Ralls et al. (2002) provide 
an important set of guidelines for using PVA in 
conservation decisions.

The additional complexity of stochastic 
single-population models compared with 
deterministic matrix population models is an 
example of a tradeoff  that we will revisit fre-
quently. On the one hand, stochastic models are 
more appealing to fi eld biologists because they 
are more realistic and include more processes; 
therefore, they can incorporate more of what 
fi eld biologists know or hypothesize about 
the system. On the other hand, not only are 
estimates of demographic rates required, as in 
matrix population models, but also mechanis-
tic relationships between the environment and 
demography (e.g. rates and intensities of catas-
trophes, long-term trends in carrying capacity, 
and forms of density dependence) must be 
documented. Finally, the accuracy with which 
demographic rates are depicted should be 
determined through model-validation studies. 

Even with this added complexity, stochas-
tic single-population models do not consider 
several factors that commonly occur in nature 
and may aff ect extinction rates. Immigration 
and dispersal are rarely incorporated in single-
population models but can have important 
eff ects on population dynamics (Stacey and 
Taper 1992). Individuals may o� en be found 
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not in a single panmictic population, but rather 
in spatially distinct subpopulations distributed 
widely across the landscape and connected by 
infrequent dispersal events. In addition, demo-
graphic rates and their variances may vary 
spatially among diff erent habitats or subpopu-
lations (Pulliam 1988). Typically, other types of 
models are used to address these complexities, 
namely metapopulation models and spatially 
explicit models. 
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Metapopulation models have become impor-
tant tools for understanding the relationships 
between landscape structure and population 
dynamics. By incorporating spatial characteristics 
of local populations, metapopulation models 
provide a means of analyzing and predicting 
the response of individual species to habitat 
fragmentation and other features of landscape 
structure. They also provide a degree of realism 
that appeals to managers and researchers. 

Whether a metapopulation or single-
population model is the more appropriate way 
to describe population dynamics depends on 
what is known, or believed, about population 
structure and the importance of landscape-
dependent processes. Faced with the need to 
model a species living in a patchy landscape, it is 
important to determine whether the additional 
processes that metapopulation models incor-
porate are important and necessary to depict 
population dynamics accurately with respect to 
the objective of the modeling exercise (Hanski 
2002, Harrison and Ray 2002). A key question 
is how fragmented the system is relative to the 
dispersal ability of the species being modeled. 
Several types of evidence can be suggestive 
of metapopulation dynamics. Turnover, or the 
extinction and recolonization of local popula-
tions, is the most widely cited (Hanski 1992) but 
is not a necessary condition for a population to 
be treated as a metapopulation (Kareiva et al. 
1997, Hanski and Gaggio� i 2004). Unfortunately, 
long-term data on turnover are rarely available, 
and turnover may not be observed in metapopu-
lations that are driven more by “rescue” than 
by recolonization (Stacey et al. 1997). Rigorous 
approaches to investigating processes that pro-
duce metapopulation dynamics are reviewed 
by Ims and Yoccoz (1997) and exemplifi ed for 
various taxa in Hanski and Gaggio� i (2004). 

Techniques employed include radiotelemetry, 
and enclosures and experimental releases to 
elucidate the role of dispersal and emigration 
in population dynamics. Modern mark–recap-
ture methods, especially multistrata models, 
are becoming increasingly important for esti-
mating movement and demographic param-
eters in marked populations (White et al. 2002). 
Robust statistical techniques recently have 
been developed to estimate patch occupancy 
while accounting for imperfect detection rates 
and missing data (MacKenzie et al. 2002, 2003, 
2006). A complicating factor for metapopulation 
modeling is whether the focal species inhab-
its a highly dynamic landscape or a “shi� ing 
mosaic” of patches, because most metapopula-
tion models assume that the confi guration and 
quality of habitat patches are relatively static 
(Wiens 1997; but see Hastings 2003, Hanski and 
Gaggio� i 2004). For example, Fleishman et al. 
(2002) found that occupancy and turnover were 
be� er modeled by measures of habitat quality 
than by patch area or isolation. When present, 
strong temporal changes may dominate the 
dynamics of a system, and accounting for such 
changes in habitat quality in a metapopulation 
model may be diffi  cult (Thomas and Hanski 
2004). Even if a landscape is nearly static, the 
population dynamics within a system may not 
fi t a metapopulation framework. For example, if 
a system is functioning as a single population or 
as a collection of independent populations with 
no migration, use of a metapopulation model 
may be inappropriate (Harrison 1994, Harrison 
and Bruna 1999).

Recent years have seen a proliferation of 
metapopulation models. Below, we outline 
some of the characteristics of these models and 
discuss the merits of diff erent models from a 
conservation perspective. 
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Metapopulation models can be grouped 
into three classes: theoretical, occupancy, and 
patch models. Theoretical models (Hanski and 
Gaggio� i 2004) typically make simplifying 
assumptions about the spatial characteristics 
of patches—for example, assuming equal 
patch size or uniform distribution of patches 
(Lamberson et al. 1992, Gilpin 1996). They may 
use “neutral landscapes” (With 2004), la� ice 
models (Hanski and Gaggio� i 2004), or method 
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of moments or other mathematical approaches 
(Bolker 2004). These models typically do not 
use site-specifi c information; consequently, 
their purpose is to provide general insights 
into metapopulation processes. These models 
tend to be very general in nature, and they have 
made fundamental contributions to our under-
standing of metapopulation dynamics. 

Occupancy models have been developed 
and popularized by Hanski (1994a, b), who 
used incidence functions to model metapopu-
lations. Hanski’s approach has been modifi ed 
and elaborated into a class of models commonly 
referred to as “stochastic patch occupancy 
models” (SPOMs; Hanski and Gaggio� i 2004). 
Etienne et al. (2004) provide an overview of 
diff erent types of SPOMs. The incidence func-
tion approach combines the pa� ern of patch 
occupancy with relationships derived from 
biogeography to estimate colonization and 
extinction rates (Hanski 1999), whereas the 
patch-turnover approach is based on docu-
menting patch colonizations and extinctions 
(Sjogren-Gulve and Ray 1996, Kindvall 2000, 
Sjogren-Gulve and Hanski 2000). A key char-
acteristic of SPOMs is their reliance on simple 
presence–absence data obtained from single or 
multiple surveys to estimate the probability that 
a patch is occupied and to model metapopula-
tion dynamics (Hanski 1998, Thomas and 
Hanski 2004). Morris and Doak (2002) provided 
computer algorithms for developing occupancy 
models using maximum-likelihood (ML) tech-
niques or logistic regression, and Moilanen 
(2004) and Grimm et al. (2004) have created 
generic so� ware to develop occupancy models. 
Grimm et al. (2004) also provide an example 
for Capercaillie (Tetrao urogallus). An important 
recent advance for parameterizing occupancy 
models was made by MacKenzie et al. (2002, 
2003). They extended mark–recapture statisti-
cal approaches to estimate patch occupancy, 
colonization, and extinction rates that account 
for imperfect detection. These techniques have 
been implemented in the programs MARK 
and PRESENCE (see Acknowledgments). Once 
parameterized from fi eld data, an occupancy 
model can then be applied to other metapopu-
lations of the same species or used to simulate 
metapopulation dynamics by substituting new 
patch-area and patch-isolation data in a simula-
tion model (Hanski 1999). 

A rapidly growing list of species has been 

studied using occupancy models, but bird stud-
ies are notably rare. Hanski and Gaggio� i (2004) 
searched literature published from 1996 to 2000 
and found that birds were the least-studied 
taxa, compared with mammals, fi sh, bu� erfl ies, 
and plants. Avian examples include Neotropical 
migrants (Villard et al. 1992), Pacifi c Island birds 
(Cook and Hanski 1995), and the European 
Nuthatch (Si� a europaea; ter Braak et al. 1998). 
The paucity of patch-occupancy models for bird 
studies may refl ect the relative scarcity of unoc-
cupied suitable habitat or turnover, perhaps 
in part because of the greater dispersal ability 
and longevity of birds as compared with other 
organisms. 

Patch models are perhaps the most widely 
used metapopulation models (Fig. 3B). In 
patch-based models, the smallest unit in which 
population size is tracked is the individual habi-
tat patch. Individuals reside only within these 
patches and may move or disperse among them, 
but they are not permi� ed to survive in the sur-
rounding landscape. Thus, metapopulation 
models incorporate spatial relations in a rather 
restricted manner, because spatial data are 
limited to a matrix of interpatch distances and 
patch sizes. Neither the location of individuals 
within a patch nor the types of landscape matrix 
that surround a patch are included; however, 
both may aff ect survival or reproduction and 
are o� en included in spatially explicit models 
(Fig. 3C, D). Population dynamics within each 
patch are usually modeled as in stochastic 
single-population models, with the additional 
steps of determining the numbers of individu-
als that will disperse from and migrate to each 
patch. Patch models are popular because easy-
to-use so� ware packages are readily available 
(Lindenmayer et al. 1995). 

The choice of model type may depend, in part, 
on the availability of data needed to parameter-
ize the model. Data requirements for metapopu-
lation models vary considerably, ranging from 
a few parameters for some theoretical models 
to dozens of parameters for complex patch 
models (Beissinger and Westphal 1998, Grimm 
et al. 2004, Moilanen 2004). Theoretical models 
typically have fewer input variables, requiring 
only very coarse, general data. For example, 
Levins’s (1969) model that introduced the meta-
population concept had only two key param-
eters, extinction and colonization rates, which 
predicted the fraction of occupied patches. 
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Occupancy models have a fairly standardized 
set of input parameters (Morris and Doak 
2002, Grimm et al. 2004). These include simple 
fi eld data consisting of patch area, occupancy, 
interpatch distances, and several parameters 
that are typically estimated using nonlinear 
ML regression or related techniques. Examples 
of the la� er include parameters expressing the 
eff ect of distance on migration rate or the rela-
tionship between emigration rate and popula-
tion density. For example, a model by Hanski 
(1994b) included eight parameters: carrying 
capacity, density-independent growth rate, 
strength of density dependence, demographic 
stochasticity, environmental stochasticity, 
emigration rate, migration mortality rate, and 
interpatch distances. Some of these parameters 

require information that is nearly impossible to 
obtain in the fi eld (e.g. rate of mortality during 
migration), but techniques that require a few 
simplifying assumptions are available to esti-
mate them from readily obtainable fi eld data 
(Hanski 1994b, 1999). Accurate estimates of 
some parameters may be unimportant to over-
all model accuracy (Hanski 1994a), but Ims and 
Yoccoz (1997) suggest that precise and unbi-
ased estimates of emigration, migration, and 
colonization rates may be especially important 
for systems with high rates of transfer among 
patches. This argues for the importance of 
applying statistical techniques that incorporate 
uncertainty in detection when estimating move-
ment and occupancy rates (White et al. 2002, 
MacKenzie et al. 2003). Sensitivity analysis and 

F	�. 3. Demographic PVA models with various degrees of spatial explicitness, modified from Gilpin (1996) 
and Beissinger and Wesphal (1998). (A) The landscape includes four patches of forest (shaded gray and num-
bered 1–4) surrounded by a matrix of agricultural lands (shaded white) and dissected by a river (shaded black) 
that acts as a barrier to dispersal. (B) Patch metapopulation model for the landscape in (A) showing linkages 
between patches by dispersal indicated by arrows. Each patch has its own internal population dynamics. 
(C) Spatially explicit cellular automata or grid model for the landscape in (A). The landscape is now represented 
by grid cells, each with its own population size, immigration and emigration rate, and fecundity and survival 
rate based on the grid-habitat characteristics and the habitat characteristics of surrounding grid cells. Occupied 
cells have stars, dashed lines indicate influences of neighboring cells, and arrows show potential dispersal 
among patches. (D) Individually based model where the movement path, mortality (indicated by an “X”), and 
reproduction of each animal (star) is tracked across the landscape. Survival and fecundity may differ between 
the matrix and the patches, as well as within the patches in relation to distance from the edge.
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comparative simulation experiments can also be 
used to evaluate model uncertainty (Grimm et 
al. 2004). 

Patch models typically require more detailed 
data than theoretical or occupancy models 
(Akçakaya 2000a, b; Hanski and Gaggio� i 
2004). Simple patch models may require patch 
carrying capacities, population growth rates, 
and immigration and dispersal rates among 
patches. More complex models may have 
many input requirements in common with the 
matrix or stochastic single-population models 
discussed above. For example, age- or stage-
structured vital rates may be required, with 
the added twist that these parameters may vary 
among patches. 

Patch models also require parameters 
related to spatial structure. These include 
whether rates of dispersal and immigration 
are dependent on density within a patch and, 
most importantly, the degree of correlation 
among patches for environmental stochastic-
ity (Lindenmayer et al. 1995, Beissinger and 
Westphal 1998). Environmental stochasticity 
is typically assumed to be perfectly correlated 
among patches, meaning that all patches simul-
taneously experience the same good or bad 
conditions. This assumption reduces the infl u-
ence of processes important to metapopulation 
dynamics, such as the rescue eff ect (Morris 
and Doak 2002). If vital rates within patches 
vary synchronously and if vital rates do not 
vary greatly among patches, the metapopula-
tion behaves much like a single population; 
but if they vary asynchronously, the dynam-
ics of a metapopulation can be very diff erent 
from those of a single population (Stacey et al. 
1997). Such variables are extremely diffi  cult to 
measure in the fi eld, yet they may have a major 
eff ect on model results and population behav-
ior. Sensitivity analyses are especially important 
when using models with poorly known param-
eters (Beissinger and Westphal 1998, Mills and 
Lindberg 2002).

Outputs from the various metapopula-
tion models diff er greatly and may also be 
a determining factor in the choice of model 
type. Because theoretical models may diff er 
greatly in their underlying assumptions, few 
generalizations can be made about their output. 
Occupancy models usually yield estimates for 
turnover rates and the equilibrium proportion 
of patches that are occupied. Grimm et al. (2004) 

recommend “intrinsic mean time to extinction” 
(Grimm and Wissel 2004) as the primary output 
from their generic model. Once an adequate 
occupancy model is created for a species, it can 
be applied to other landscapes to make predic-
tions about the equilibrium occupancy rate for 
new sets of patches (Hanski 1999, Hokit et al. 
1999). Also, by changing the number or con-
fi guration of patches, the relative importance 
of each patch to metapopulation persistence 
can be evaluated (Hanski 1994a, 1999). Thus, 
these models can be used to evaluate the suit-
ability of a landscape for a species and the con-
servation value of particular habitat patches. 
Because they are based on presence–absence 
data and are designed to predict patch occu-
pancies, occupancy models generally are not 
used to predict population densities or actual 
population size. Patch models have an advan-
tage here; in addition to turnover rates and 
equilibrium occupancy, they also provide popu-
lation trajectories, risk of population extinction 
or decline, and related measures of population 
size (Akçakaya and Atwood 1997, Hokit et al. 
1999). 

Estimates for parameters, such as dispersal 
or the correlation of vital rates among patches, 
are o� en based on sparse data. Also, there is 
o� en li� le basis for choosing among diff erent 
structures for modeling dynamic processes, 
such as conditions that cause individuals to 
migrate from one patch to another. Sensitivity 
analysis can reveal how important a parameter 
or assumption is to the output of a model; this 
indicates how much the reliability of model 
output is compromised by diffi  cult-to-estimate 
parameters or by the particular way a process is 
modeled (Beissinger and Westphal 1998, Grimm 
et al. 2004). With metapopulation models, sensi-
tivity analysis is used primarily for this purpose 
rather than to determine the best parameters to 
alter through management eff orts; the la� er is 
done with matrix population models. For exam-
ple, Akçakaya and Atwood (1997) found large 
diff erences in sensitivity among 17 parameters 
in their patch-based metapopulation model of 
the California Gnatcatcher (Polioptila californica). 
Such fi ndings may provide assurance that some 
poorly known parameters are relatively unim-
portant compared with other, be� er-known 
ones. This allows fi eld biologists to focus on 
measuring the parameters that ma� er most 
(Dunning et al. 1995).
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Compared with stochastic single-population 
models, metapopulation models increase 
demands on fi eld biologists for data to param-
eterize and validate (Beissinger and Westphal 
1998). The ability to validate metapopulation 
models by comparing simulated and observed 
data varies among model types. Theoretical 
models are rarely intended to mimic a particular 
system accurately; therefore, comparing model 
output with actual fi eld data usually serves li� le 
purpose. Occupancy and patch models usually 
are applied to particular situations, making 
validation a possibility. Occupancy models are 
o� en validated by using a model developed 
for one metapopulation to make patch-occu-
pancy predictions for another metapopulation, 
which are then tested against the actual patch-
occupancy data (Hanski 1994a, Hokit et al. 
1999). Patch models can also be validated by this 
approach and by comparing predicted popula-
tion trends with actual population trends. For 
example, Wooton and Bell (1992) found a good 
fi t between the population increase of Peregrine 
Falcons predicted by a model and the observed 
increase over an eight-year period. 

Usually, however, managers and research-
ers are interested in predicting the likelihood 
of extinction too far into the future for valida-
tion to be feasible. Also, fi eld situations that 
provide true replicates to develop a probabil-
ity of extinction are exceedingly rare (but see 
Hanski [1999] for possible examples). Data sets 
with trajectory or extinction information are 
o� en too limited in spatial or temporal extent 
to compare with model output, making strong 
statistical validation of these models diffi  cult. 
One approach is to develop diff erent models of 
the same system independently and then com-
pare the models for concordant output (Noon 
and McKelvey 1996b, Kindvall 2000, Hokit et al. 
2001). Another approach is to test specifi c com-
ponents or assumptions of the model (Thomas 
et al. 1990). Such tests are valuable, but they do 
not demonstrate the model’s overall accuracy 
in predicting the future. Consequently, many 
researchers discourage reliance on predictions 
projected far into the future from these simu-
lation models. Instead, they recommend using 
the models for other purposes. These include 
identifying variables that are likely to be most 
important, elucidating system dynamics, gen-
erating new hypotheses, and evaluating the 
relative eff ectiveness of diff erent management 

approaches (Akçakaya and Atwood 1997, 
Beissinger and Westphal 1998, Reed et al. 2002, 
Grimm et al. 2004). 
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Metapopulation models diff er signifi cantly 
in their potential for use in conservation. 
Theoretical metapopulation models are usu-
ally designed to derive a be� er understanding 
of general conservation principles about how 
metapopulations work (Hess 1996a, b; With 
1997, 2005; With and King 2001), though they 
can be designed to model specifi c situations. 
Occupancy models are highly practical, because 
they directly incorporate site-specifi c fi eld data; 
they can make short-term predictions about the 
patch occupancy of a given species for diff er-
ent confi gurations of patches, imagined or real. 
Thus, occupancy models can be useful in man-
aging landscape structure. An important criti-
cism of occupancy models is that they assume 
“quasistationarity”—in other words, that the 
data used to parameterize the model came from 
a system with no increasing or decreasing trend 
in patch occupancy (Hokit et al. 2001, Hanski 
2002). Many present-day landscapes may be 
far from equilibrium because of recent human-
induced fragmentation. However, recent studies 
suggest that occupancy models may be fairly 
robust to violations of this assumption (Hanski 
1999, Hanski and Gaggio� i 2004), and modifi ca-
tions to occupancy models have relaxed this 
assumption (Moilanen 1999, Etienne et al. 2004). 

Patch models are less vulnerable to this 
problem, because they rely on measurements of 
vital rates that do not necessarily assume equi-
librium conditions (Hokit et al. 2001, Morris 
and Doak 2002). For example, a metapopula-
tion model was developed for the California 
Gnatcatcher in a rapidly changing landscape 
in Orange County, California (Akçakaya and 
Atwood 1997). The model projected a rapid 
population decline and a high risk of extinction 
in most simulations. An important implication 
was that the results were strongly divergent, 
depending on the lengths of time used in the 
simulations. Simulations identifi ed a critical 
time horizon of 30–40 years, at which predicted 
extinction rates were greatest. Wooton and Bell 
(1992) used a patch model of the Peregrine 
Falcon to identify the northern population as 
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a source and the more critically endangered 
southern population as a sink. They concluded 
that intensive recovery actions on the southern 
population were probably misplaced, and that 
the same eff ort directed at the source population 
in the north would eventually strengthen the 
southern population through the source–sink 
dynamics linking the two populations. Because 
patch models partly rely on underlying biologi-
cal mechanisms, they may be applicable to more 
widely diff erent situations than occupancy 
models (Hokit et al. 2001). However, estimating 
demographic rates and numerous other param-
eters needed for these models greatly increases 
the demand on fi eld biologists for demographic 
data, and increased model complexity also 
brings greater risk of error propagation caused 
by poor parameter-estimation (Conroy et al. 
1995, Beissinger and Westphal 1998, Morris and 
Doak 2002). 
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An especially complex type of simulation 
model, spatially explicit models incorporate 
exact spatial and temporal locations of objects. 
Objects might include patches of habitat, indi-
vidual organisms, diff erent populations, or barri-
ers to dispersal (Fig. 3). Spatially explicit models 
have been used to study a variety of large-scale 
ecological pa� erns and processes, such as deter-
mining the distribution of suitable habitat at 
multiple scales (Ha� en and Paradzick 2003) and 
predicting regions of future human–wildlife 
confl icts (Treves et al. 2004). Their primary use 
in ornithology has been in the study of regional 
population dynamics. We concentrate on spa-
tially explicit population models (SEPMs) in this 
review. Spatially explicit population models may 
be built for entire metapopulations or for single 
populations, depending on what objects are 
included and how they are distributed. 

Some models are considered “spatially 
implicit” if they include measures of landscape 
composition, such as proportions of diff erent 
habitats in a landscape (Dunning et al. 1992, 
Donovan et al. 1995, McGrath et al. 2003). For 
example, the metapopulation models reviewed 
above are spatially implicit, because they include 
some spatial information, such as patch size 
and distances between patches. However, those 
models are not completely “spatially explicit,” 
because they operate without tracking specifi c 

locations of individuals within each habitat 
patch or kinds of habitat surrounding the patch, 
each of which may aff ect demography. 

Spatially explicit population models o� en 

include individuals as objects, which are placed 
in known locations in space and assigned 
habitat-specifi c demographic traits based on 
these locations (Fig. 3). The models then total the 
results of all individuals to obtain population sta-
tistics, such as population size at a specifi c time, 
population trajectories, or time to extinction. 
Thus, SEPMs are o� en individual-based models 
(IBMs), but their main outputs are population 
characteristics and processes. Spatially explicit 
models can be used to model movements of indi-
viduals across a diverse landscape (Cooper et al. 
2002) or responses of populations to changing 
landscape structure (Akçakaya 2000b).

Individual-based models have several 
advantages over the aggregate population 
models discussed above. They can describe 
population traits with distributions rather than 
mean values, explicitly represent individual 
performance, incorporate local interactions, 
and yield a mechanistic rather than descriptive 
approach to modeling (DeAngelis and Rose 
1992). Individual-based models appeal to fi eld 
biologists, because they simulate important 
processes in the lives of individual organisms, 
the scale at which population dynamics are 
determined. Thus, IBMs may be employed as 
population models without a spatial compo-
nent, as, for example, in modeling larval recruit-
ment in fi sheries, where such models have been 
employed with great success (DeAngelis et al. 
1993, Rice et al. 1993). However, IBMs require 
extensive data on behavior and its demo-
graphic consequences. Habitat-based IBMs, for 
example, require that variation in the expected 
values of birth, death, and movement rates be 
explicitly related to habitat variation. Spatially 
explicit IBMs are the most complex means of 
representing population dynamics and are most 
appealing for species that have complicated life 
histories and inhabit heterogeneous landscapes 
(DeAngelis and Rose 1992, Murdoch et al. 1992, 
Walters et al. 2002). 
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Spatially explicit population models typi-
cally take one of two forms (Fig. 3C, D). Grid- or 
cell-based models track population sizes in cells 
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that are typically the building blocks of larger 
habitat patches. Cells do not have to be equal 
in size (Walters et al. 2002). Cells are infl uenced 
by the inputs and outputs of neighboring cells. 
Grid-based models can be used to monitor sepa-
rate populations in each cell, especially when the 
modeled populations are so large that follow-
ing each individual may be impracticable. Such 
population-based models are commonly used 
for abundant organisms such as plants, insects, 
or rodents (Bradstock et al. 1996, Price and 
Gilpin 1996). McCarthy et al. (2000) presented 
an avian example of a population-based model. 
They constructed a spatial PVA model of two 
Australian treecreepers (family Climacteridae) 
in 39 remnant patches of native habitat. The 
model simulated population dynamics in each 
occupied patch, and allowed dispersers to link 
between-patch dynamics. Most avian SEPMs are 
individual-based models that track the location 
of every individual and calculate population 
sizes from counts of individuals in each location. 
In these models, population dynamics are the 
outcome of processes that occur at the level of the 
individual. Individual-based models have been 
used to simulate responses to regional manage-
ment practices (Boone and Hunter 1996), to eval-
uate translocation options (Akçakaya et al. 1995), 
and to simulate the eff ects of forest management 
policies (McKelvey et al. 1993, Lamberson et al. 
1994, Liu et al. 1995, Walters et al. 2002). 

The crucial part of spatially explicit modeling 
is linking a population model to a landscape 
map (Akçakaya 2000a). The map can be as sim-
ple as a set of patches, some defi ned as suitable 
habitat and others as unsuitable for a particu-
lar species. More complex maps can include 
habitat variables that contribute to classifying 
habitat suitability for each location. All models, 
however, require a mapping of the locations 
of good and poor habitat from the standpoint 
of the species considered. The development 
of extensive Geographic Information System 
(GIS) databases for conservation has allowed 
the incorporation of real-world landscapes into 
spatial models. When a GIS-database includes 
the distribution of habitat patches, a landscape 
grid can be created by overlaying a grid of cells 
on top of the original map and then assigning 
habitat characteristics from the original map to 
each cell. This works most easily if the grid cell 
size is considerably smaller than the polygons 
of the original map.

The population model that is linked to the 
landscape map can take diff erent forms, depend-
ing on the simulations being done. A typical 
format is a life-history simulator that classifi es 
each individual in the model by sex and age and 
then takes it through an annual cycle of breed-
ing, survival during the nonbreeding season, 
and dispersal. Ideally, individuals are assigned 
habitat-specifi c demographic traits, depending 
on where they are located on the landscape 
grid. Their life history may also depend on loca-
tion. For example, the likelihood of successful 
dispersal may depend on proximity to vacant 
areas of suitable habitat. In models that treat the 
sexes separately, reproductive success may be 
related to the spatial distribution of individuals 
of the opposite sex. More complex social and 
reproductive strategies, such as obligate fl ock-
ing and cooperative breeding, have recently 
been incorporated in SEPMs (Cooper et al. 2002, 
Walters et al. 2002). In all these cases, the model 
sums across individuals and landscape patches 
to calculate population characteristics at vari-
ous time steps.

Most published SEPMs for bird species are 
developed for species that are rare, endangered, 
or of strong management interest. Typically 
these species are not migratory. These species 
characteristics are partly a� ributable to the 
extensive data needs of SEPMs. Endangered 
species programs are more likely than other 
research groups to have the necessary funds 
and logistical support to collect such data. 

Spatially explicit population models are 
extremely data-hungry. Ideally, they require 
extensive data on the distributions of habitat 
types and quality across landscapes, habitat-
specifi c demography from the landscape, and 
an accurate idea of dispersal pa� erns and move-
ment rules. Such detail is rarely available. Some 
of the needed data can be gathered relatively 
easily; for instance, existing GIS databases can 
provide the habitat distributions. However, the 
maps generated from GIS systems o� en need 
to be verifi ed by visiting the areas. Maps of 
habitat distributions are useless without eco-
logical knowledge of how habitat quality aff ects 
reproduction and survival. Long-term survey 
data can provide estimates of habitat-specifi c 
density, but locally accurate demographic and 
dispersal data are generally not available for 
most species. To provide the data these models 
require, fi eld biologists must partition their 
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demographic data by habitat quality (Krementz 
and Christie 1999) and acquire extensive data 
on dispersal and movement pa� erns. 

Like most models, SEPMs conform to the 
“garbage in, garbage out” rule. The reliability 
of the model depends on realism of structure, 
validity of the coding algorithms, and accuracy 
of the data used to initialize the simulations. 
In building a model of a real-world landscape, 
the physical layout of the landscape can be 
confi rmed with remote sensing data, and 
thus is usually not the limiting factor in the 
model. Larger problems are usually presented 
by a� empting to connect habitat suitabilities 
to various patch types, parameterizing the 
population model, and building realistic dis-
persal rules. For each of these steps, there is no 
substitute for accurate natural-history informa-
tion for the region and species under study.

Ruckelshaus et al. (1997) constructed an 
SEPM of hypothetical populations to deter-
mine the consequences of parameter error in 
general model performance. Large errors in 
model predictions resulted from inaccurate 
parameterization of dispersal characteristics. 
Errors in landscape classifi cation had smaller 
eff ects on model performance. Wennergren et 
al. (1995) also found that model results were 
highly infl uenced by error associated with 
dispersal parameters. If these results are cor-
rect, they suggest caution in widespread use of 
SEPMs, because the models were most sensitive 
to errors in parameters that are typically the 
most diffi  cult to estimate. Mooĳ  and DeAngelis 
(1999), however, argue that Ruckelshaus et al. 
(1997) greatly overestimated the inaccuracies 
of error propagation in these models. They 
also showed through a simulation exercise 
that SEPMs may suff er less from uncertainty 
in parameter estimates than simpler models 
(Mooĳ  and DeAngelis 2003) and proposed a 
strategy of model development to reduce the 
chance of signifi cant error propagation.

The second main theme apparent from a 
review of published avian SEPMs is that nearly 
all models have been developed for permanent 
resident species. In part, this may refl ect the fact 
that many species of management interest are 
resident species (e.g. Northern Spo� ed Owls). 
But some rare and endangered species are fully 
migratory (e.g. Whooping Crane and Golden-
cheeked Warbler [Dendroica chrysoparia]), so the 
relative lack of SEPMs for migratory species 

is striking. In concept, the development of a 
SEPM for a migratory species on its breeding 
grounds is straightforward, except for the dis-
persal routines. Migrants show diff erences from 
permanent residents in how they disperse to 
initial breeding sites; these diff erences present 
challenges to model developers.

In the life-history simulator in a typical SEPM 
designed for a permanent resident, individuals 
(both adult and juvenile) are subject to mortal-
ity during the nonbreeding period and then 
disperse to fi nd suitable breeding locations. 
Typical models allow surviving adults to be 
site-faithful to previous breeding locations, 
and juveniles to inherit natal sites when their 
parents do not survive or to start dispersing 
from their natal patch. For permanent resident 
species, therefore, the number and location of 
potential dispersing individuals is easily deter-
mined for each year of a simulation—they are 
based on the results of mortality during the 
preceding nonbreeding period. 

For a migratory species, however, these basic 
components of the dispersal subroutine are not 
trivial decisions for the model developer. First, 
fi eld studies of migratory birds have demon-
strated that few locally produced off spring 
return to breed close to their natal territory 
(Nolan 1978). Thus, each year, the potential 
new breeders that search for available breed-
ing positions are not local birds and do not 
have specifi c locations from which to begin the 
dispersal phase. The modeler must decide how 
to place these individuals on the landscape grid 
at the start of dispersal. Are the new dispersers 
placed at random into any grid cell or only into 
suitable-habitat cells? Are they initially placed 
in the southernmost cells, to imitate a migratory 
movement from southern wintering grounds? 
Field studies of how migratory birds make their 
initial habitat choices provide few guidelines.

Perhaps more important for model results, 
the model developer must determine how many 
dispersers to recruit into the population each 
year. For closed populations of permanent resi-
dents, the number of dispersers is determined 
by survival of local adults and juveniles from 
the previous year. But this is not necessarily 
true for migratory species, unless the production 
and survival of local individuals is correlated 
with regional populations—that is, if results of 
the model from the previous year can be used 
as a guide to regional population dynamics. 
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Although this may be true in some cases, there 
are many cases where local demography would 
not be a good guide. For instance, if the local site 
being modeled is a sink population, then the 
number of juveniles produced locally would not 
be a good measure of regional productivity. If 
the local population is a consistent source popu-
lation, then productivity and survival may vary 
much more outside the local population than 
within it. Pulliam et al. (1995) demonstrate that, 
even at the landscape scale, the relative quality 
of local sites can have strong eff ects on local 
dynamics in surrounding regions. Conceptually, 
there are ways to overcome these problems; but 
so far, no SEPMs for migratory species have been 
published. King et al. (2000) developed a spatially 
explicit model that they used to assess the status 
of Henslow’s Sparrows (Ammodramus henslowii) 
in a highly fragmented landscape. Using the 
results of modeling the sparrow population on 
a hypothetical landscape, they were able to make 
management recommendations for reversing a 
severe population decline in this species. 
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Spatially explicit models can be used in 
several conservation contexts. Hypothetical 
populations can be modeled on artifi cially gen-
erated landscapes to determine the likelihood 
of population response to a general change in 
landscape structure. For example, Pulliam et 
al. (1992) used an SEPM of Bachman’s Sparrow 
(Aimophila aestivalis) to determine the impor-
tance of a rare habitat type, longleaf pine (Pinus 
palustris) forest, in the sparrow’s population 
dynamics. A series of simulations was done, 
in which the amount of the rare habitat type 
was varied in a hypothetical landscape, and 
a population model based on the life-history 
characteristics of the sparrow was run on these 
diff erent landscapes. The population responded 
disproportionately to increases or decreases in 
longleaf pine forest, which suggests that this 
habitat played a more important role in popu-
lation dynamics, compared with other habitat 
types in the species’ range,  than its relative rar-
ity would have suggested (Pulliam et al. 1992). 
Because this rare habitat type contained other 
species of management interest, most notably 
the endangered Red-cockaded Woodpecker, the 
model results were used to bolster management 

recommendations that this habitat type be pro-
tected and increased where possible. 

The second use of spatially explicit models 
is in the study of eff ects of specifi c changes in 
land use on individual species in particular 
landscapes. Perhaps the unique contribution of 
SEPMs is the ability to examine how a proposed 
management action in an actual landscape 
might aff ect a given population. To answer this 
concern, the actual landscape is usually incor-
porated into the modeling exercise, because 
general simulations on hypothetical landscapes 
do not have the necessary specifi city. 

Spatially explicit models of Bachman’s 
Sparrow have been used to examine the long-
term consequences of timber management in 
southeastern pine forests. Bachman’s Sparrows 
occupy temporary successional stages of man-
aged pine forest and are strongly aff ected by 
creation of such habitat through timber-harvest 
programs. Pulliam et al. (1992) and Liu et al. 
(1995) used the model to study landscape eff ects 
in this poorly dispersing species and to make 
recommendations concerning specifi c manage-
ment plans in a particular forested landscape. 
One recommendation was to increase suitable 
habitat for Bachman’s Sparrows by altering 
the habitat structure of 40- to 50-year-old pine 
forest (which they generally would not use) to 
mimic that of the mature forests the species pre-
fers. This recommendation was implemented, 
and Bachman’s Sparrows quickly colonized the 
modifi ed stands (Dunning et al. 2000).

Spatially explicit IBMs have also been 
developed for several threatened or endan-
gered cooperative breeders, including the 
Florida Scrub-Jay (Aphelocoma coerulescens; Stith 
et al. 1996) and the Red-cockaded Woodpecker 
(Letcher et al. 1998, Walters et al. 2002). In both 
cases, this approach was used because of the 
spatially restricted dispersal behavior of help-
ers, which cannot be incorporated into simpler 
models. The Red-cockaded Woodpecker model 
was later modifi ed for a study of the eff ects 
of landscape change on another cooperative 
breeder, the Brown Treecreeper (Climacteris 
picumnus) of Australia (Cooper et al. 2002). 
Spatially explicit population models were also 
important in making management decisions for 
the Northern Spo� ed Owl (McKelvey et al. 1993) 
and in guiding land-management decisions in 
southern California that aff ect the endangered 
California Gnatcatcher (Akçakaya 2000a). 
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Spatial models have been infl uential in the 
research and management decisions involved 
in restoring the Florida Everglades (Sklar et 
al. 2001, 2005). Models have been developed 
to track the changes in regional hydrology 
throughout the Everglades as restoration is 
implemented, as well as changes in associated 
ecological factors such as the distribution of 
natural fi res within the system (Lockwood et al. 
2003). Avian models were used to evaluate how 
changes in hydrology and fi re regimes in the 
Everglades would aff ect population dynamics 
of Cape Sable Seaside Sparrows (Ammodramus 
maritimus mirabilis; Pimm and Bass 2002, 
Lockwood et al. 2003), Snail Kites (Curnu�  et 
al. 2000, Mooĳ  et al. 2002), and wading birds 
(Fleming et al. 1994, Curnu�  et al. 2000). The 
models typically ranked alternative manage-
ment scenarios with a goal of comparing the 
relative responses. Although no single manage-
ment alternative is benefi cial to all studied spe-
cies, multispecies modeling allowed managers 
to be� er understand the potential tradeoff s in 
responses of species.

A� empts to validate SEPMs are rare in 
the literature (Conroy et al. 1995, Schiegg et 
al. 2005). Unfortunately, as with stochastic 
single-population and metapopulation models 
discussed above, many SEPMs used in con-
servation applications are designed to predict 
population pa� erns that operate at too great a 
spatial or temporal scale to permit direct vali-
dation (e.g. extinction rates predicted in 50 or 
100 years). One common approach to model 
validation is to parameterize the model with 
data from one region of interest and then apply 
the model to another area to determine if model 
predictions are robust (Akçakaya and Atwood 
1997, Akçakaya 2000a, Schiegg et al. 2005). 
McCarthy et al. (2000) built a model to see how 
fragmentation aff ects two species of Australian 
treecreeper using data from outside the main 
study area and then determined the model’s 
ability to predict extinction and colonization 
events within the region. The model tended to 
underestimate the observed number of extinc-
tions and colonizations, perhaps because of 
imperfect detection probabilities derived from 
fi eld surveys. The validation a� empt for the 
treecreeper model improved model develop-
ment by highlighting the model components 
that may have contributed to errors in model 
predictions (McCarthy et al. 2000). Schiegg et al. 

(2005) compared results of a model of dynamics 
developed for one population of Red-cockaded 
Woodpeckers to the dynamics of a diff erent 
population. In this case, the model proved to be 
accurate in predicting most population param-
eters of the second population, though Schiegg 
et al. (2005) concluded that be� er estimates of 
some aspects of dispersal behavior would fur-
ther improve the model.

Another approach is to predict short-term 
pa� erns that can be tested against fi eld data. In 
the Bachman’s Sparrow model, for instance, Liu 
(1993) used a randomization procedure to ini-
tialize population distributions onto a map sim-
ulating part of the Savannah River Site, South 
Carolina. This procedure was based on fi eld 
data of habitat use in a single year. Liu (1993) 
then produced predicted distributions of bird 
density across diff erent-aged stands in future 
years. When distributions were documented in 
subsequent years, the fi t between predicted and 
observed distributions was satisfactory. Less 
satisfactory results were obtained by match-
ing observed versus predicted distributions of 
dispersing individuals in an unusual landscape 
that developed later (Dunning et al. 2000). The 
la� er result suggested that the dispersal sub-
routines could be improved.

As with metapopulation models, sensitiv-
ity analyses have been conducted primarily as 
simulation exercises to identify key parameters, 
rather than to gain insights into management. In 
more sophisticated analyses, several parameter 
values are varied in a factorial experimental 
design, allowing the detection of interaction 
eff ects among parameters (Pulliam et al. 1995). 
Sensitivity analyses have been done with the 
Spo� ed Owl, Bachman’s Sparrow, Red-cockaded 
Woodpecker, and California Gnatcatcher mod-
els. The la� er model proved to be most sensitive 
to density-dependent eff ects, weather-related 
catastrophes, and adult survival and fecundity 
(Akçakaya and Atwood 1997). In the Bachman’s 
Sparrow model, demographic parameters, 
such as adult survivorship and habitat-specifi c 
reproductive success, were identifi ed as having 
a greater infl uence on model results than land-
scape characteristics or dispersal (Pulliam et al. 
1992). The Red-cockaded Woodpecker model 
was also more sensitive to mortality parameters 
than to dispersal parameters, except under 
conditions of extremely low population density 
(Letcher et al. 1998). 



MODELS IN AVIAN CONSERVATION 25

The appeal of spatially explicit models lies in 
their ability to capture the actual variability of 
specifi c landscapes, but this also represents one 
of their greatest weaknesses. If a model is built 
to test the response of a specifi c population in a 
particular landscape, it is not clear whether the 
results can be generalized to other species in 
the same landscape, or to the same species in a 
diff erent location. Diff erent species move over 
landscapes in diff erent ways (Belisle 2005). A 
mapping of landscape change at a particular spa-
tial and temporal scale for sparrows may not be 
relevant for modeling Red-tailed Hawks (Buteo 
jamaicensis). Research to determine the fl exibility 
of spatially explicit modeling across diff erent 
landscapes and diff erent species is urgently 
needed; one published example is the applica-
tion of the Red-cockaded Woodpecker model to 
an Australian species with a similar life history 
(Cooper et al. 2002). This need is compounded 
by the large amounts of natural-history data 
required to parameterize models accurately for 
multiple species on various landscapes.

Simulating hypothetical populations on artifi -
cially generated landscapes can provide general 
results that test landscape ecology theory (Fahrig 
and Merriam 1994, With 2005). For instance, 
With and King (2001) modeled songbird popula-
tions on artifi cial landscapes to test the relative 
importance of edge eff ects and area sensitiv-
ity. They determined that the eff ect of habitat 
fragmentation could be reduced by retaining 
some large habitat patches within a landscape. 
Although the results of models of hypothetical 
populations can produce management insights, 
resource managers are reluctant to accept the rel-
evance of theoretical results. With any complex 
model, the tradeoff  between realism and general-
ity is disproportionate. Loss of generality is a cost 
that users of spatially explicit models sometimes 
accept in generating results needed for specifi c 
conservation se� ings.

Not all landscape models need to be spatially 
explicit. The data-demanding nature of these 
models and the computer expertise required 
to design them suggest that simpler model-
ing approaches should be adopted whenever 
possible. For instance, an important landscape 
variable aff ecting some bird populations is the 
amount of suitable habitat within a reasonable 
distance of current populations (Pearson 1993, 
McGrath et al. 2003). The specifi c location of the 
suitable habitat may not explain much of the 

residual variation in population dynamics. This 
is an eff ect of landscape composition (Dunning et 
al. 1992) and can be modeled with a simpler ana-
lytical approach (e.g. Olson et al. 2004). Urban 
(2005) has recently proposed a graph analysis 
technique that produces results that are similar 
to spatially explicit metapopulation models but 
does not require the same level of detail.

An example of how to determine the proper 
degree of model complexity is provided by 
McGarigal and McComb’s (1995) excellent 
landscape study of breeding birds in mature 
forest of the Oregon coastal range. Most bird 
species showed strong landscape-composition 
eff ects, such as increasing their numbers in 
areas with more old forest, but few species were 
aff ected strongly by the spatial arrangement of 
habitat patches. A landscape model for most 
species would not need to be spatially explicit, 
because the model would need only track the 
area of late-seral habitat in a given region and 
not the location. Species that responded to edge, 
patch size, or other aspects of spatial arrange-
ment might be more profi tably modeled in a 
spatially explicit manner.

Several theoretical studies have suggested 
that the eff ects of placement of objects in the 
landscape are most apparent when the criti-
cal habitat resources constitute 5–30% of the 
landscape (Fahrig 1992, Lamberson et al. 1992, 
Andren 1994). When the critical habitat type 
makes up <5% of the landscape, the patches may 
be too isolated to be found easily by dispersers. 
When the habitat exceeds 30% of the landscape, 
dispersers may move easily throughout the 
landscape and few eff ects of landscape struc-
ture are signifi cant. Overall habitat loss has a 
greater eff ect on population loss than fragmen-
tation alone (Fahrig 1997), which suggests that 
landscape composition eff ects should be exam-
ined before developing a fully spatial model for 
a specifi c conservation situation.

If one accepts the accuracy of a given model, 
spatially explicit models allow the study of 
population dynamics at the spatial and tempo-
ral scales at which land-use decisions are made. 
Because they directly incorporate the habitat-
change processes that may aff ect the popula-
tion dynamics of many species, SEPMs should 
be able to provide important insights. But we 
must understand key biological processes well 
to incorporate them correctly. Spatially explicit 
population models, like the other models we 
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review, cannot substitute for carefully designed 
fi eld studies. Their construction, parameteriza-
tion, reliability, and validation are critically 
dependent on fi eld studies. On the other hand, 
SEPMs can benefi t fi eld studies by identify-
ing what parameters most aff ect population 
dynamics and what data may be most valuable 
for conservation (Dunning et al. 1995). 

G����	� M����


All models discussed to this point represent 
descriptions of population dynamics. The 
current and future dynamics of populations 
are a major concern in conservation, but they 
are not the only concerns. Below, we discuss 
models used to investigate two related ques-
tions, genetic variation and geographic distri-
bution. We begin with genetics.

The chief conservation concerns regarding 
genetic variation are preservation of genetic 
variability and avoidance of inbreeding depres-
sion. Describing genetic variation is useful, not 
only in this context, but also in assessing various 
aspects of population structure critical to popu-
lation models. Therefore, the word “genetics” 
is used in several distinct ways in discussions 
of modeling in conservation: molecular genetic 
techniques are used to describe genetic varia-
tion and to diagnose population structure, tax-
onomy, and other biological features; whereas 
genetic models are used to diagnose popula-
tion status and viability and to test hypotheses 
regarding recovery actions. 

Molecular genetic techniques have been 
widely applied to conservation problems 
(Hedrick and Miller 1992, Avise and Hamrick 
1996, Haig 1998, Webster et al. 2002). For exam-
ple, mitochondrial DNA, amplifi ed fragment 
length polymorphisms (AFLPs), single nucleo-
tide polymorphisms (SNPs), random amplifi ed 
polymorphic DNA (RAPDs), and microsatel-
lites have all been used in conservation studies 
to identify metapopulation structure so that 
appropriate population viability analyses could 
be done. Molecular techniques have also been 
used to identify mating systems so that social 
structure and other features could be param-
eterized appropriately in demographic PVA 
models (Haig et al. 1993b, 1994b). Similarly, 
molecular data can be used to identify individu-
als in a pedigree to properly incorporate popu-
lation structure in population viability analysis, 

to conduct pedigree analyses on a verifi ed pedi-
gree, or to identify species or stocks (Haig et al. 
1994a, 1995, 1997, 2003; Daniels and Walters 
2000; Jones 2002; Blouin 2003; Gautschi et al. 
2003; Ballou and Ralls 2004). A great challenge 
to these eff orts is the common problem of how 
to construct pedigrees in the absence of infor-
mation pertaining to the relatedness of known 
individuals (Gautschi et al. 2003, Russello and 
Amato 2004). O� en, people choose assignment 
tests on the basis of extrapolations of related-
ness from known individuals to unknown. 
However, Wang (2004) proposed a model that 
used information about groups, instead of 
individuals, to manage populations. Molecular 
genetic applications to conservation have been 
well reviewed (Avise and Hamrick 1996, Haig 
1998), so we concentrate on understanding how 
models are used to evaluate genetic goals.

Genetic goals related to preserving genetic 
variability and avoiding eff ects of inbreed-
ing can be used to defi ne population viability. 
Genetic goals have been much discussed over 
the past 10–15 years in relation to the importance 
of genetic, as opposed to demographic, goals 
in population recovery eff orts (Lande 1988a, 
Schemske et al. 1994). Briefl y, one view is that 
populations should be managed to maximize 
genetic variability, because this may increase 
the likelihood of long-term population persis-
tence. The opposing view is that habitat is being 
destroyed and populations are declining too 
quickly for managers to be concerned with long-
term genetic goals, and that demographic popu-
lation goals should therefore be paramount. Both 
genetic and demographic factors are important 
in assessing population viability, but their rela-
tive importance varies depending on the situa-
tion (Haig 1998). For example, when the last of 
the Guam Rails (Rallus owstoni) and Micronesian 
Kingfi shers (Todiramphus cinnamomina cinnamo-
mina) were brought into captivity, it was critical 
to identify close relatives prior to establishing 
a captive breeding program (Haig et al. 1994a, 
1995). Once this was determined, it was then 
important to expand the populations as fast as 
possible to reduce the risk of extinction brought 
about by stochastic demographic events. 

S�������� � G����	� M����


Eff ective population size.—Critical to avian 
population biology and conservation is the 
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theoretical model posed by Wright (1931) when 
he defi ned “eff ective population size” (N

e
) as the 

number of individuals in a population that con-
tribute genes to the next generation. Useful for 
estimating the magnitude of genetic loss over 
time in a small population, N

e
 is a description of 

the eff ect of genetic dri�  on a natural population 
when conditions are not ideal. Characteristics of 
an ideal population are both genetic and demo-
graphic, and include large and stable size, equal 
genetic contribution of both sexes, no inbreed-
ing, equal family size, and non-overlapping 
generations. Most organisms violate some or 
all of these characteristics. Deviations from 
the ideal population size, or the relationship 
between N

e 
and the censused population size 

(N), are compared to evaluate the status of an 
actual population (Waples 2002). N

e
 is gener-

ally substantially less than N, o� en constituting 
only 10–25% of total population size (Frankham 
1995, Waples 2002). Comparison of N

e
 with N 

and changes of N
e 
over time provide a useful 

yardstick with which to measure progress of 
a population toward recovery. Furthermore, 
managers can examine the specifi c parameters 
that are aff ecting changes in N

e
 as a means of 

diagnosing factors inhibiting recovery.
The usefulness of N

e
 as a means of measuring 

population status, more specifi cally its relative 
vulnerability to inbreeding depression and loss 
of genetic variability through genetic dri� , was 
recognized early in the history of conservation 
biology. Franklin (1980) and Soulé (1980) sug-
gested that small populations ideally should 
a� ain an N

e
 of 50 individuals over the short 

term and of 500 individuals over the long term. 
This “50/500 rule” was quickly incorporated 
into recovery planning eff orts, such as that 
directed at Red-cockaded Woodpeckers (U.S. 
Fish and Wildlife Service 1985). This merging of 
genetic and demographic information was well 
intended, but choosing specifi c numeric goals 
has not served the purpose, because some man-
agers have adopted the specifi c numeric goals 
(e.g. 50 or 500) without regard to the structure 
of their populations. For the Red-cockaded 
Woodpecker, a genetically eff ective size of 500 
may require at least 509 breeding pairs or a total 
population size of 1,322 individuals, includ-
ing nonbreeding helpers (Reed et al. 1988). 
Later, Lande (1995) elaborated on the 50/500 
rule by proposing that a minimum eff ective 
size of 5,000 should be a� ained. More recently, 

Franklin and Frankham (1998) have argued that 
an N

e
 of 500–1,000 is appropriate. Thus, the 

debate continues.
Unfortunately, choosing impossible or unre-

alistic goals has weakened the popularity of 
using N

e
 as a concept in management. Many 

avian populations could never practically a� ain 
an N

e
 of 500, and many have never realized an 

N
e
 of 5,000. A more appropriate use of the con-

cept is that proposed by Mace and Lande (1991) 
when they revised the criteria for listing species 
for the International Union for the Conservation 
of Nature (IUCN) Red List. They proposed vari-
ous categories for listing based on estimates of 
N

e
 and other factors, such as amount of habitat 

alteration and chance of catastrophe. Thus, fac-
tors aff ecting N

e
 estimates are considered, but 

managers are not held to specifi c numeric goals. 
Below, we discuss how managing for improved 
N

e
 can be carried out through pedigree and 

viability models.
Pedigree analyses.—Perhaps some of the least 

known, most poorly understood, but helpful 
genetic models for small populations are pedi-
gree analyses (Fig. 4), which are based on the 
gene-drop model (MacCluer et al. 1986, Mace 
1986, Haig and Ballou 2002). Pedigree analy-
ses were developed for assessing management 
strategies for captive populations, but they have 
proved helpful for understanding processes in 
natural populations as well. They are a way 
of assessing genetic variability so that adverse 
eff ects of inbreeding can be avoided.

Gene-drop pedigree analyses are Monte 
Carlo simulations in which 10,000 iterations of 
the model represent sampling of an individual’s 
entire genome. Each founder is assigned two 
unique alleles at the beginning of a simulation 
(Fig. 4). Using SPARKS so� ware (Lacy 2004), 
the model “drops” each of the two alleles for 
each founder through an established pedigree, 
generation by generation, assuming Mendelian 
inheritance. Model iterations generate a distri-
bution of probabilities that individuals in the 
living population share founder alleles in a 
proportion related to genetic events encoun-
tered over generations. Thus, events such as 
inbreeding or over-representation (referred 
to as “over-breeding”) of certain individuals 
will result in a disproportionate number of 
some founders’ genes in the living population. 
Overall, the gene drop provides an estimate 
of genetic diversity in the living population. 
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F	�. 4. Gene-drop pedigree model and analysis for a small population. (I) In this example pedigree, each of 
the three founders (birds A, B, C) has been given different alleles (nos. 1–6). (II) The gene-drop model operates 
by randomly passing founder alleles through the pedigree from parents to offspring with a 50% chance of each 
allele’s passing to the offspring. After one iteration of the simulation, birds H and J are homozygous, whereas 
others in the living population (birds G and I) are heterozygous. Thus, 50% of the heterozygosity is retained 
(two of four living individuals). In the living population, three unique alleles (1, 4, 6) have survived and all three 
founders are represented. Because some alleles have been lost (2, 3, 5), founder contribution is variable: four 
of eight alleles in the living population are contributed by founder A, one of eight from founder B, and three 
of eight from founder C. The simulation would continue by returning to the original starting pedigree (I) and 
beginning a new iteration of the gene-drop process. This process would be repeated until 10,000 iterations had 
been completed to produce probability distributions of the model outputs (see text for details).
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Assumptions of the gene-drop model include 
independence among model runs, no linkage, 
and no selection. The consequences of violat-
ing these assumptions depend on the extent to 
which linkage and selection occur in the natural 
situation. In a diff erent approach, the model can 
use a specifi c pedigree structure, rather than a 
simulated structure, which adds reality to the 
exercise. The standard data set required for 
gene-drop analysis is simple (Table 1), and the 
model can be applied to either captive or wild 
populations (Haig and Ballou 2002).

An example of one iteration of the gene-
drop model is depicted in Figure 4. In a typical 
analysis, 10,000 iterations are performed and 
the results are summarized as the frequency 
with which neither, one, or both of two alternate 
founder alleles survive in the living popula-
tion. From this, the following parameters of the 
current population can be calculated: founder 
contribution, the number of unique alleles sur-
viving (allelic diversity), heterozygosity, mean 
kinship, inbreeding coeffi  cients, and founder 
genome equivalents. Founder contribution is a 
measurement of the “presence” of founders in 
the living population. A founder is counted as 
present in the living population if either or both 
of its alleles are present. The gene-drop simula-
tion summarizes the number of times this occurs 
in relation to other founders. To maximize 
genetic diversity, all founders must be equally 
represented in the living population; thus, 
under- or over-represented founders reduce 
genetic diversity. The number of unique (i.e. 
founder) alleles at the end of a gene-drop simu-
lation estimates the representation of founder 
alleles present in the living population. It diff ers 
from founder contribution, in that founder con-
tribution is made if either or both founder alleles 
are present, whereas number of unique alleles 
is a direct count of alleles. From a conservation 
perspective, the goal is to maximize the number 
of unique alleles in the living population. This 

is achieved by a� empting to equalize founder 
contribution. The gene-drop approach measures 
heterozygosity by counting the number of living 
heterozygous individuals a� er each run and 
averaging across runs. Use of founder genome 
equivalents (FGE) combines maximizing the 
number of unique alleles and equalizing founder 
contribution. If 21 founders start a population, 
there are 42 unique alleles, and FGE is 21 when 
all founders are equally represented in the living 
population and the 42 unique alleles are present 
as well. Previously, population managers strove 
to maximize FGE. In recent years, the concept of 
mean kinship has been incorporated into these 
considerations. Mean kinship is the average 
kinship between an individual and all others in 
the pedigree and is used as a measure of genetic 
importance of an individual in a pedigree. The 
relationship between FGE and average mean 
kinship (AMK) is: AMK = 1/2 * FGE (Ballou and 
Lacy 1995). The manager’s goal is to minimize 
mean kinship or maximize founder genome 
equivalents so that relatedness among individu-
als is kept low and inbreeding does not become 
a problem. Inbreeding is considered by calculat-
ing an inbreeding coeffi  cient, which is the prob-
ability that two individuals carry alleles that are 
identical by descent, a measure of the extent of 
mating of close relatives that managers try to 
minimize.

The gene-drop model can be verifi ed by com-
paring simulated values to actual values cal-
culated by hand from the pedigree. However, 
variables such as heterozygosity cannot be 
verifi ed using molecular data, because assump-
tions of the model are not met by measurements 
of molecular markers. The model begins by 
assuming 100% heterozygosity among found-
ers (i.e. each founder has two unique alleles), 
whereas molecular measures take into account 
the eff ects of previous genetic events.

The information derived from the gene-drop 
model describes population structure and 

T���� 1. Structure of the standard input fi le (“Me, Ma, Pa” fi le) used to keep studbooks, to 
construct pedigrees, and for gene-drop analyses.

 Studbook number Sex Dam Sire Alive (A) or Dead (D)

 1 M WILD WILD A
 2 F WILD WILD A
 3 F WILD WILD D
 4 M 2 1 A
 5 F 2 1 A
 6 F 3 4 A
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indicates the importance of diff erent individu-
als to the living population. The technique can 
also be used to evaluate various breeding strate-
gies. The consequences of diff erent pairings can 
be compared by adding hypothetical off spring 
from selected pairs to the bo� om of the pedi-
gree and running the model to see how genetic 
diversity or population structure is altered. This 
exercise is particularly useful when se� ing up 
programs to introduce or translocate individu-
als. For example, when Guam Rails were to be 
introduced on the island of Rota, the gene-drop 
was used to determine the best pairings to pro-
duce chicks for the release (Haig et al. 1990).

One of the most positive aspects of pedi-
gree analyses is that, compared with other 
approaches, the data sets required are rela-
tively easy to construct, particularly for captive 
populations, and the programs are easy to run. 
Furthermore, because the gene-drop model 
takes into account the exact structure of the 
pedigree, it is quite realistic. Nevertheless, the 
greatest obstacle to its use with wild bird popu-
lations is the requirement of a deep pedigree 
derived from marked individuals of molecularly 
confi rmed parentage. For fi eld biologists con-
ducting long-term studies of marked birds, the 
insight gained into population structure from 
gene-drop pedigree analysis is a worthwhile 
dimension that few have explored. For exam-
ple, when a tiny population of Red-cockaded 
Woodpeckers had nearly been extirpated from 
the Savannah River Site in South Carolina, DNA 
fi ngerprinting helped prepare a pedigree (Haig 
et al. 1993a). The gene-drop analysis was then 
used to measure heterozygosity and compare 
its loss with the heterozygosity of the original 
population; to evaluate inbreeding; to deter-
mine which founding birds were over- and 
under-represented in the living population; 
and, perhaps most importantly, to determine 

the potential for improving population viability 
through be� er breeding practices (i.e. introduc-
ing individuals of specifi c age or sex; Haig et al. 
1993b). Subsequent PVAs merged this genetic 
information with demographic information 
to provide a more comprehensive plan for 
recovery.

U
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Population viability analysis models usually 
take one of the forms of demographic models 
reviewed above. However, an examination of 
popular, commercially available population or 
metapopulation viability so� ware programs 
indicated that genetic factors, such as reduced 
fecundity or survival caused by inbreeding 
depression, were not well incorporated in any of 
them (Table 2). Among the programs reviewed, 
VORTEX incorporates genetic factors to the 
greatest extent, but even with it the genetic data 
entered can be fairly generic. VORTEX uses the 
gene-drop model to simulate occurrences of 
inbreeding and lethal homozygotes, and calcu-
lates mean expected heterozygosity and mean 
inbreeding coeffi  cient at diff erent intervals 
(Haig and Ballou 2002). Inbreeding depression 
is incorporated in terms of reduced juvenile sur-
vival, and eff ects of lethal recessives are incor-
porated through heterozygote advantage. Few 
studies have calculated lethal equivalents (Ralls 
et al. 1988), so exact values for lethal equivalents 
are diffi  cult to fi nd, and the eff ect of mildly del-
eterious mutations may not pose a threat to 
populations with N

e
 ≥ 25 (Gilligan et al. 1997). 

However, the latest edition of VORTEX (ver-
sion 9.5) allows users to determine the type of 
mating for the population (e.g. mating by mean 
kinship). Thus, it uses the pedigrees it creates to 
make management decisions. A new program 
called ZOORISK models captive populations 

T���� 2. Consideration of genetic factors in common population viability models used in conservation 
planning.

 Potential to model genetic factors

So� ware Model  Hetero- Genetic
program input a Inbreeding zygosity  distance N

e
 Reference

VORTEX Individual Yes Yes No No Lacy et al. (2005)
GAPPS Individual Yes No No No Downer (1993)
RAMAS Matrix Yes No No No Akçakaya (2004)
INMAT Matrix Yes No No No Mills and Smouse (1994)

a Individual = identifi es and tracks each individual throughout the simulation; matrix = based on stages or ages in a population.
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using PVA simulations and gives them IUCN-
like categories for risk, depending on the results 
(Earnhardt et al. 2004). 

Incorporating additional genetic information 
into PVA models will provide a more complete 
and realistic evaluation of population persis-
tence, but it will not be simple. Population 
viability analysis models are demographic 
models. Thus, genetic factors must be linked 
to demography. We could begin by trying to 
incorporate inbreeding into a model. However, 
one can never tell where or how inbreeding 
will strike in a population. It could aff ect life 
span, fecundity, sperm count, juvenile mortal-
ity, or other a� ributes. Therefore, it would be 
diffi  cult to a� ribute the eff ects of inbreeding to 
a specifi c demographic factor. Conversely, there 
are some generic rules that could be incorpo-
rated into models so that they would start to 
consider genetic factors. For example, a model 
could assume that for every 20% loss of fi tness 
there would be a 20% increase in inbreeding 
depression. Another approach would be to use 
measures such as genetic distance and gene fl ow 
to defi ne the relationship among populations in a 
metapopulation. Currently, some models assume 
equal distance among populations, whereas oth-
ers require stating a migration rate, which is 
o� en based on an unreliable estimate. Finally, 
PVA models could evaluate genetic factors 
independently of demographic factors, such as 
changes over time in heterozygosity or inbreed-
ing that were estimated by molecular data; they 
could report a separate probability of persistence 
based on genetic factors. This probability could 
be monitored over time or tested against various 
management options. As in PVAs (Beissinger 
and Westphal 1998, Reed et al. 2002), the specifi c 
probabilities reported will not be as informative 
as comparisons of changes in persistence values.

The most comprehensive applications of 
genetic considerations in conservation should 
use all the analyses described above with the goal 
of improving N

e
 (i.e. use molecular tools to deter-

mine population structure, perform pedigree 
analysis, and incorporate genetic factors in PVA). 
Such an approach has rarely been undertaken. 

A more prominent role for genetic models and 
genetics in conservation depends on resolution 
of several issues. First, resistance to considering 
genetic factors needs to be overcome. Toward 
this end, workers involved in molecular genetic 
analyses and modeling have a responsibility to 

translate their results into a format easily under-
stood by those involved in conservation. Second, 
molecular tools should be more widely employed 
to parameterize population structure in models 
used for population-viability or metapopulation-
viability analyses. To accomplish this, models 
with appropriate structure are needed. Finally, 
because the concept of eff ective population size 
is important and helpful to managers, we need 
to consider it more carefully and more o� en in 
population recovery eff orts.
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The fi nal category of models we will discuss, 
species distribution models (SDM), are powerful 
tools for converting individual point-locality 
data (e.g. museum collection records) into the 
hypothetical distributional range of a species 
(Corsi et al. 2000, da Fonseca et al. 2000) or pre-
dicted ranges following environmental change 
(Polansky et al. 2000, Peterson et al. 2002a). Thus, 
SDMs have great potential utility for avian con-
servation, especially because avian biologists are 
o� en pressed to make recommendations about 
conserving biodiversity in parts of the world with 
limited data on species distributions (da Fonseca 
et al. 2000, Peterson et al. 2000). Compared with 
other vertebrate groups, however, the large 
amounts of data available on bird distributions 
and natural history make them one of the best 
groups for SDMs (e.g. Edwards et al. 1996).

Over the past 50 years, a wide variety of 
techniques have been used to link animal 
distributions to habitat features (reviewed in 
Stauff er 2002). Species distribution models vary 
from simple sets of rules based on overlays of 
environmental and species-occurrence data 
(e.g. BIOCLIM and simple overlay; Nix 1986, 
Busby 1991, Loiselle et al. 2003) to sophisticated 
multivariate analyses (Pereira and Itami 1991, 
Carpenter et al. 1993), or artifi cial-intelligence 
techniques using rule-based sets of algorithms 
(e.g. GARP; Stockwell and Peters 1999, Godown 
and Peterson 2000, Anderson et al. 2003). 
Predicted species distribution maps are also an 
integral part of gap analysis, which is concerned 
with locating concentrations of high biodiver-
sity and identifying species, usually terrestrial 
vertebrates, that are poorly represented by the 
current set of protected and managed areas 
(Sco�  et al. 1993, 1996). The goals of using these 
models are (1) to establish relationships between 
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habitats and biodiversity; and (2) to establish 
links between habitat conditions and the viabil-
ity of one or several species, allowing predictions 
about habitat changes (Van Horn 2002). Typically, 
the focus in most ornithological studies has been 
on modeling terrestrial species. 

Traditionally, range maps depicting the distri-
bution of a particular species were either a dot 
map of specifi c locations where a species had 
been recorded or a solidly colored range map 
enclosing all know sightings (Bu� erfi eld et al. 
1994). The boundaries of the species range were 
defi ned either by connecting specimen or sight-
ings locations (e.g. minimum convex polygons) 
or, more commonly, by drawing arbitrary lines 
to encompass the suspected range of the species, 
like range maps that one might fi nd in a fi eld 
guide. However, most species do not occupy all 
areas within their range; rather, the distribution 
is patchy. Species distribution models a� empt to 
increase the accuracy of range maps by eliminat-
ing those areas within the known range where 
the species does not actually occur.
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Two distinct approaches are commonly used 
to model species distributions. One “bo� om-up” 
approach is to start with known locations, or 
point-location data, and then extrapolate that 
information to the entire range of the spe-
cies or to an area of interest. O’Connor (2002) 
called these “forecasting models.” For example, 
the program DOMAIN (Carpenter et al. 1993) 
takes known distribution points for species and 
uses map layers of environmental factors, such 
as climate, soil, and land use, to construct an 
environmental habitat envelope or “domain” 
for those points. The envelope is then compared 
with environmental data for the region under 
study and a map is produced of similarity 
ranges of the species’ primary domain.

Similarly, genetic algorithm for rule-set 
prediction (GARP) models include sev-
eral algorithms in an iterative, artifi cial-
intelligence-based approach (Stockwell and 
Noble 1992, Stockwell 1999, Stockwell and 
Peters 1999) using point-source data (e.g. 
museum specimens). As such, these models use 
only data on known occurrence, even if data 
exist on areas of nonoccurrence (Anderson et 
al. 2003). Usually, occurrence points are divided 
randomly and evenly within GARP into training 

and testing data sets (Peterson and Kluza 2003), 
though Anderson et al. (2003) suggested a pro-
tocol for model selection based on omission 
and commission rates that allows all data to be 
used in an analysis. The genetic algorithm for 
rule-set prediction works in an iterative process 
of rule selection, evaluation, testing, and incor-
poration or rejection; a method is chosen from 
a set of possibilities (e.g. logistic regression or 
bioclimatic rules) and then applied to the train-
ing data until a rule is developed or evolved. 
Predictive accuracy is evaluated on the basis of 
points resampled from the test data and points 
sampled randomly from the study region as a 
whole, which are summarized in a rule-signifi -
cance measure. Rules may evolve by a number 
of means that mimic DNA evolution (e.g. point 
mutations, deletions, crossing over). The change 
in predictive accuracy from one iteration to the 
next is used to evaluate whether a particular 
rule should be incorporated into the model, and 
the algorithm runs either for 1,000 iterations or 
until convergence.

A second “top-down” approach is to 
start with the known distribution of a spe-
cies and a� empt to eliminate those parts of 
the distribution where the species does not 
occur. O’Connor (2002) called this approach 
“exploratory models.” Gap analysis uses such 
an approach (Sco�  et al. 1993, 1996; Jennings 
2000). Landcover maps of actual vegetation are 
used as surrogates to predict distributions of 
organisms on the basis of habitat-relationship 
models. Species distributions are then overlaid 
on maps of management, ownership, or both, 
using a geographic information system (GIS). 
Species with signifi cant amounts of habitat out-
side the protective envelope of managed lands 
are defi ned as “gap species,” and unmanaged 
habitats supporting those species are potential 
“gaps” in need of conservation planning (Sco�  
et al. 1993). Although gap analysis can be con-
ducted on smaller scales (White et al. 1997, Karl 
et al. 2000), it is generally considered a “coarse-
fi lter” approach to conserving biodiversity, 
because it works best at large scales and with 
common species. For example, Brooks et al. 
(2004) and Rodrigues et al. (2004) present the 
beginnings of a global gap analysis. Because it is 
enacted at such large spatial scales and analyzes 
many species, gap analysis is the antithesis of 
endangered species programs that focus on 
single species that are rare.
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As originally proposed by Sco�  et al. (1993), 
the basic components associated with a com-
pleted gap analysis include (1) a hierarchically 
based map of actual vegetation; (2) predicted 
distribution maps for each breeding terrestrial 
vertebrate species and, in some cases, other 
taxa (e.g. wintering birds, bu� erfl ies); (3) a land 
ownership–management status map depicting 
current stewardship; and, most importantly, 
(4) a spatially explicit representation of areas of 
potentially high biodiversity and their relation-
ship to current stewardship. 

Habitats used by species of interest are 
defi ned by the landcover map. Each species 
is linked to landcover types using habitat-
relationship models (Sco�  et al. 1993, 1996; 
Bu� erfi eld et al. 1994). Briefl y, habitat-
relationship models are developed by identify-
ing those cover types in which a species might 
occur (Morrison et al. 1992). In rare cases, a 
species might be restricted to only one habitat 
(i.e. one landcover category). More commonly, 
species occur in several habitat types and may 
even occur in all habitat types within a given 
area. The sum of all habitats in which a species 
might occur becomes the potential distribution 
of that species. Incorporating the known dis-
tribution of a species within a given area, the 
predicted distribution of a species then becomes 
all habitats the species might occupy within its 
known distribution (Fig. 5). Additional model 

inputs, such as digital elevation data, location of 
aquatic habitats (e.g. lakes, streams, wetlands), 
presence of caves, and size of habitat polygons, 
have been used in several states to refi ne the 
predicted distributions of gap species. Using 
data from the Washington Gap Analysis proj-
ect, Smith et al. (1997) demonstrated how avian 
habitat-relationship models can be successfully 
combined with landcover information. 

As in any predictive model, there are four 
possible outcomes of an SDM linking species to 
habitats: (1) presence of a species is predicted 
accurately; (2) absence is predicted accurately; 
(3) presence is predicted, but the species is actu-
ally absent (error of commission, false positive, 
or type I error); and (4) absence is predicted, but 
the species is actually present (error of omis-
sion, false negative, or type II error). Statistically 
valid methods for assessing the accuracy of pre-
dicted distributions of animals exist, if those 
four rates can be estimated. An overall index of 
the performance of a species distribution model 
is encapsulated by its kappa value (Fielding and 
Bell 1997), given by the formula:

[(a + d) – (((a + c)(a + b) + (b + d)(c + d))/N]

[N – (((a + c)(a + b) + (b + d)(c + d))/N)]

where a = number of times when both model and 
observations predict occurrence, b = number of 

F	�. 5. Example of a gap modeling process for the Ovenbird (Seiurus aurocapilla) in Arkansas (see text for 
details). The known distribution (current range) by county within the state was determined from James and 
Neal (1986) and a committee of bird experts. The distribution of potential habitats within the state was based on 
habitats the species is known to occur in based on input from the committee. The predicted distribution is the 
combination of those two maps, showing the potential habitats within the known distribution.
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times when observations indicate absence and 
model predicts occurrence, c = number of times 
when observations predict occurrence and 
model absence, and d = number of times when 
both model and observations predict absence. 
These kinds of statistical tests typically require 
an independent data set that was not used in 
model development, a requirement that may 
not be met with most SDMs.

Loiselle et al. (2003) compared the accuracy 
of 11 modeling approaches to the actual dis-
tribution of 11 cotingids of conservation con-
cern in the highly fragmented Atlantic forest 
of southeastern Brazil using the kappa value. 
The models they tested included BIOCLIM, 
simple overlay, three versions each of logistic 
regression (50%, 85%, and 95% probability), 
DOMAIN (85%, 90%, and 95% cut-off ), and 
GARP (of fi ve runs, one randomly chosen run 
[GARP1], cells that were selected in four of fi ve 
runs [GARP4], and cells that were selected in 
fi ve of fi ve runs [GARP5]). Results varied dra-
matically among the various models, with the 
DOMAIN90 and DOMAIN95 having the high-
est kappa values. 

Loiselle et al. (2003) further cautioned that 
conservation planners need to evaluate the con-
servation implications of errors of commission 
and omission before they start the modeling 
process. In the case of 11 cotingas, Loiselle et al. 
(2003) found that models that minimized errors 
of commission lead to a be� er selection of reserve 
networks. In contrast, because animals rarely 
occupy all suitable habitats within their range, 
gap analysis models will generally overpredict 
species occurrence, leading to a higher rate of 
errors of commission than of omission (Smith and 
Catanzaro 1996). The best GARP models seem to 
have low rates of omission and medium to high 
rates of commission (Anderson et al. 2003). In 
a direct comparison, gap analysis models had 
fewer omissions and GARP models had fewer 
overestimations (Peterson and Kluza 2003).

Individual bird species diff er in how accu-
rately they can be modeled, which in many cases 
can be determined a priori (Boone and Krohn 
1999). In general, Boone and Krohn (1999) found 
that sites larger than 1,000 ha with checklists that 
were based on >10 years of records had the low-
est commission errors. In building bird–habitat 
relationship (BHR) models for 60 species in 
northern Idaho, Karl et al. (2000) found that 
increasing model complexity decreased errors 

of commission more than it increased errors of 
omission, leading to be� er overall model accu-
racy. Thus, it would appear that improvement of 
avian predictive models should focus on factors 
that decrease errors of commission. 

Evaluating the accuracy of GARP models 
presents an interesting challenge, because the 
results vary each time a model is run. This is 
caused by the way the starting point is selected, 
typically at random. One approach is to run 
a model a certain number of times and select 
areas of habitats on the basis of how o� en they 
appear in the model. Loiselle et al. (2003) ran fi ve 
GARP models and selected a model at random 
(GARP1), a model based on areas that occurred 
in four of fi ve models (GARP4), or a model 
based on areas that occurred in all fi ve models 
(GARP5). Running GARP models repeatedly 
and only incorporating those areas that are 
consistently identifi ed by the models tends to 
decrease the total area of the fi nal model (K. G. 
Smith pers. obs.). Anderson et al. (2003) outline 
a fi ve-step protocol based on accepted levels 
of omission and commission, rerunning GARP 
models until a suitable number of models (e.g. 
n = 20) fi t that criteria, and superimposing 
those models to create a composite prediction. 
Peterson and Holt (2003) demonstrate how 
GARP models can be combined using GIS to 
examine variation in niche characteristics across 
the range of a species. 

Guisan and Zimmerman (2000) characterized 
many of the modeling approaches currently in 
use as static and probabilistic, meaning that the 
models relate distributions of species to cur-
rent environmental conditions without regard 
to future environmental change. Typically, 
only one data set is available to construct the 
model, so that statistical techniques such as 
jack-knifi ng, cross-validation, or boot-strapping 
are used to evaluate it. Ideally, one would like to 
have two independent data sets—one to build 
the model and one to evaluate it (Guisan and 
Zimmermann 2000).

Suggestions made more than 30 years ago 
that modeling approaches should be tested 
using data sets of known structure (Alldredge 
and Ra� i 1986) have largely been ignored 
(O’Connor 2002). Most o� en, diff erent mod-
els are compared using a single data set (e.g. 
Loiselle et al. 2003); only occasionally are mod-
els tested with two or more independent data 
sets (e.g. Mitchell et al. 2001, O’Connor and 
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Wagner 2004). Mitchell et al. (2001) found that 
microhabitat and landscape models worked 
equally as well in a managed forest in South 
Carolina, and combining the two models did 
li� le to improve the results. Models were 
refi ned by using other information on species 
distributions and analyzing a second inde-
pendent data set. Models for Neotropical and 
short-distance migrants were be� er than mod-
els for permanent resident species, and models 
performed be� er for habitat specialists than for 
habitat generalists. In her study of birds asso-
ciated with co� onwood (Populus angustifolia) 
riparian forests, Saab (1999) also concluded 
that landscape variables were be� er predictors 
than microhabitat (variation within co� onwood 
stands) and macrohabitat (variation between 
co� onwood stands) variables.
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There are two main applications of SDMs 
to conservation problems: forecasting future 
ranges of species in relation to environmental 
change and gap analyses. We fi rst discuss each 
in turn, and then conclude this section by dis-
cussing several issues that apply specifi cally to 
the usefulness of these models with birds. 

A common use of SDMs has been to evaluate 
the potential eff ects of future climate change. 
Species distribution models are used to create 
a climate envelope that relates recent species 
locations to current climates (e.g. temperature, 
precipitation, and seasonality) to estimate cur-
rent distributional areas where populations 
persist in the face of competition, predation, 
and other challenges. Future distributions are 
then derived by applying the climate envelop to 
scenarios for future climate under the assump-
tions of diff erent dispersal abilities. Such work 
has been conducted with Mexican birds, with 
birds of the U.S. Rocky Mountains and Great 
Plains, and with endemic Australian vertebrates 
(Peterson et al. 2002a, Peterson 2003a, Williams 
et al. 2003). Thomas et al. (2004) recently used 
this approach to explore the eff ects of diff erent 
climate warming scenarios on future ranges 
and extinction for a variety of taxa. The ability 
of these models to accurately predict distribu-
tions 50 or more years into the future remains 
untested, and the validity of their predictions is 
unknown. 

A variant of SDM has been used to predict 
the behavior of invasive species and the loca-
tions of future invasions. Using an approach 
called “climate-matching” (Peterson 2003b), 
species are assumed to be able to invade and 
establish populations only in areas that match 
the “niche” or ecological conditions where they 
occur in their native range. Species distribution 
models are fi rst constructed and tested in the 
native range of the species, and then applied to 
other regions to forecast locations favorable for 
invasions (Peterson and Vieglais 2001, Peterson 
et al. 2002b). Peterson (2003b) provides an excel-
lent review of this emerging approach.

Gap analyses are being conducted in each 
state as part of the Gap Analysis Program of the 
U.S. Geological Survey Gap Analysis Program 
(Jennings 2000). Regional analyses that merge 
multiple states are underway for several west-
ern states whose base maps are complete. This 
process will eventually produce a seamless map 
of biodiversity for most portions of the United 
States. The true value and power of gap analy-
sis will then be realized, as ecoregions replace 
states as the units of analysis (e.g. Dietz and 
Czech 2005). 

The source of available animal data typically 
dictates the scale that is chosen for gap-analysis 
maps. For example, the Arkansas Gap Analysis 
project (Smith et al. 1998) used counties as the 
smallest geographic area to map distributions 
of vertebrates (Fig. 5). Arkansas has 75 counties 
of about equal size, and the Arkansas Audubon 
Society has collected bird distribution data for 
portions of each county for >40 years. On the 
basis of county records and suitable habitat, 
the Ovenbird (Seiurus aurocapilla) is predicted to 
breed in the hardwoods of the Interior Highlands 
and on Crowley’s Ridge in northeastern Arkansas, 
but not in the southern Gulf Coastal Plain, which 
has suitable hardwoods but is outside the known 
breeding range of the species in the state (Fig. 5). 
Eliminating habitats that the species never uses 
makes the predicted distribution more detailed 
than the original county-occurrence data. This 
technique can be extrapolated to the entire range 
of a species, providing a useful tool for refi ning 
range maps of species on the basis of use or non-
use of habitat types. 

The strengths and weaknesses of species dis-
tribution models have recently been reviewed 
thoroughly by Sco�  et al. (2002), especially in 
the chapters by O’Connor (2002) and Van Horn 
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(2002). Here, we discuss two aspects that apply 
specifi cally to avian models and their useful-
ness in conservation of birds—scale and alter-
native analytical approaches.

Two aspects of scale need to be addressed in 
any SDM: (1) the scale at which various data 
sets were collected and analyzed (Holland et al. 
2004) and (2) the extent to which data collected 
at a smaller scale are extrapolated to some 
larger scale (Miller et al. 2004). Selecting the 
wrong scale can lead to misleading or erroneous 
conclusions concerning how bird species are 
associated with various habitat characteristics 
(Mitchell et al. 2001). Birds, particularly migra-
tory species, present a real challenge, because 
they may perceive the landscape on a scale 
from less than a hectare to thousands of square 
kilometers (Wiens et al. 2002). It is unlikely that 
one scale would be appropriate for assessing 
landscape pa� erns for all bird species within a 
region or even within groups of birds with simi-
lar ecologies (Mitchell et al. 2001). Conversely, 
Savignac et al. (2000) concluded that Pileated 
Woodpeckers (Dryocopus pileatus) in Quebec 
simultaneously required habitat features at two 
diff erent scales. 

The patch of habitat used in any avian 
landscape study is related to scale. Important 
aspects of patch dynamics are patch quality; 
characteristics of patch boundaries, particularly 
as they relate to species movements between 
adjacent patches; landscape connectivity, or how 
easily organisms can move across the landscape; 
and patch context, the characteristics of land-
scape (or adjacent patches) surrounding a partic-
ular patch (Wiens et al. 2002, Holland et al. 2004). 
For example, Kilgo et al. (1998) found diff erences 
in bird community structure in bo� omland hard-
woods in South Carolina depending on whether 
the forest patch was enclosed by pine (Pinus 
taeda, P. palustris) or by fi eld-scrub habitats.

One potential problem in gap analysis that 
relates to patch size and scale is defi ning a real-
istic minimum mapping unit (MMU). Although 
the vegetation maps are typically derived from 
satellite imagery at a resolution of 30 m, the 
analysis of animals to the vegetation map is 
done at some larger scale (e.g. MMU of 40 ha or 
100 ha). Classifying a patch of 100 ha or greater 
as a single vegetation type obscures all the veg-
etation heterogeneity within that patch. Choice 
of patch size potentially changes the results of a 
gap analysis (Karl et al. 2000). Another criticism 

of the gap-analysis approach is that models 
only link species distributions to patches at 
a specifi c time in a specifi c region (O’Connor 
2002). Gap models, therefore, become outdated 
rather quickly and should be updated on some 
regular basis (e.g. redone every 10–20 years). 
A third criticism is that using vegetation as a 
surrogate for predicted distributions decreases 
resolution so that additional information needs 
to be gathered through more sampling of the 
species distributions (Stockwell and Peterson 
2003).

O’Connor (2002) has suggested that a totally 
new approach is needed for the modeling of 
animal–habitat relationships, diff erent from 
the current emphasis on correlations (see also 
Van Horn 2002). No doubt, the next decade 
will see the development of many other tech-
niques as instrumentation and computer 
analyses increase in sophistication. Guisan and 
Zimmerman (2000) present a review of many 
new techniques for development of predictive 
species–habitat models that are an improve-
ment over existing static models, and Ferrier 
et al. (2004) present a new global biodiversity 
modeling approach based on richness, faunal 
turnover, and species–area relationships. Here, 
we highlight three of those new approaches.

Classifi cation and regression trees (CART) 
are an alternative to many statistical techniques 
now commonly used to model species relation-
ships. As discussed in De’ath and Fabricus 
(2000) and O’Connor and Wagner (2004), trees 
explain variation of a single response variable 
by repeatedly spli� ing data into more homoge-
neous groups, using combinations of explana-
tory variables that can be either categorical or 
numeric. Each group is characterized by a typi-
cal value of the response variable, the number 
of observations in the group, and the values of 
the exploratory variables that defi ne it. Results 
are presented graphically, which aids in under-
standing the relationships. De’ath and Fabricus 
(2000) list the advantages of this approach: (1) 
diff erent types of response variables can be 
used; (2) it can be used for interactive explora-
tion, description, and prediction; (3) it is invari-
ant to transformations of explanatory variables; 
(4) the graphical results allow easy interpre-
tation of complex ecological data, including 
interactions; (5) models can be selected by 
cross-validation; and (6) missing data values are 
not a problem. 
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Classifi cation and regression trees have 
many applications in avian studies (reviewed 
in O’Connor and Wagner 2004). For example, 
O’Connor and Jones (1997) used CART to 
examine long-term trends in species occurrence 
on Breeding Bird Surveys (BBS) in the conter-
minous United States. Their analysis suggested 
that 15% of the BBS had lost an average of 17 
species. Using CART analysis on Breeding Bird 
Census data from the United States, O’Connor 
and Wagner (2004) were able to generally con-
fi rm the results of O’Connor and Jones (1997). 
Becker and Beissinger (2003) found CART to be 
an excellent way to analyze the marine habitat 
characteristics that aff ected the at-sea distribu-
tion of Marbled Murrelets. 

Use of generalized linear models (GLMs) 
and generalized additive models (GAMs) was 
the focus of a recent symposium (Guisan et al. 
2002). Generalized linear models are mathemati-
cal extensions of linear models that do not force 
data into unnatural scales, allowing for non-
linearity and nonconstant variance structures 
in the data. Data can be assumed to be from 
several families of probability distributions, 
including normal, binomial, Poisson, and nega-
tive binomial. Generalized additive models have 
the underlying assumption that functions are 
additive and that the components are smooth. 
The advantage of GAMs is the ability to deal 
with highly nonlinear and nonmonotonic rela-
tionships between the response and the set 
of explanatory variables. Guisan et al. (2002) 
present a brief overview of the mathematical 
relations among linear regression, GLMs, and 
GAMs. Problems that may occur with these 
approaches include multicollinearity, limitations 
in using stepwise regression, and spatial auto-
correlation (O’Connor 2002). Also, both CART 
and GAM models tend to be “data-hungry,” pre-
cluding their use on relatively small data sets. 
Guisan et al. (2002) suggest that CART models 
may prove useful in identifying interactions 
among predictors used in GLMs and GAMs.

Another emerging approach is focal patch 
analysis (Brennan et al. 2002, Holland et al. 
2004), which takes into account not only the 
patch in which a species occurs, but also the 
characteristics of the landscape surrounding 
the patch (i.e. patch context; Saab 1999). Data 
are collected on species abundance or richness 
in a number of patches or sites, and landscape 
predictor variables are measured in areas 

centered on the patch or site locations. Each 
patch then becomes a single data point in the 
analysis, and the infl uence of habitat variables 
measured at a large scale can be used to exam-
ine species abundance or richness. See Holland 
et al. (2004) for an example of this approach 
and the Landscape Ecology Laboratory web-
site (see Acknowledgments) for downloadable 
programs to conduct this analysis. Important 
issues in this approach are (1) determining the 
appropriate landscape scale, (2) using multiple 
landscapes at multiple scales, (3) patch- and 
landscape-scale factors, and (4) tradeoff s of 
intensive sampling versus obtaining adequate 
sample sizes (see Brennan et al. 2002). Although 
it has not been used in any avian studies (J. 
Holland pers. comm.), Holland et al. (2004) 
estimate that many existing data sets could be 
re-analyzed using focal patch analysis. 

What species distribution models lack in 
precision, they make up in generality. Products 
of SDMs can be considered working hypotheses 
and should be treated as such. The models are, 
in essence, a structured way to visualize those 
hypotheses, and should be viewed as starting 
points for discussion of the current and future 
spatial distribution of terrestrial vertebrates. 
The temporal dynamics of the landscape, 
coupled with the dynamics of real populations, 
may limit the usefulness of SDMs as a conser-
vation planning tool for specifi c landscapes 
(Conroy and Noon 1996, Sco�  et al. 2002). They 
can be more useful in regional planning eff orts 
(e.g. White et al. 1997), but should not be sub-
stituted for site-specifi c studies and fi eld work 
(Sco�  et al. 1993, 2002; Peterson 2005).
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To aid conservation decisions, intelligent use 
of the models discussed here requires an under-
standing of their unique a� ributes. Fortunately, 
some generalities emerge that can be used to 
evaluate these models, as well as other model 
types that we have not discussed. Certain a� ri-
butes will make models, regardless of type, 
more useful for making conservation decisions. 
These a� ributes are not easily incorporated into 
existing models, but they represent goals that 
modelers should strive to reach, so that fi eld 
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biologists will be encouraged to make greater 
use of, and provide data for, their models.

First, there is a necessary tradeoff  between 
the generality and the realism of models (Levins 
1969). Models that are general in structure lead 
to useful “rules of thumb” but o� en lack the 
realism needed for application to specifi c (con-
servation) issues. The compromise is between 
simple models with minimal data requirements 
but limited specifi city and complex models with 
extensive data requirement but high specifi city. 
The challenge is in building simple, feasible, 
and understandable models that nevertheless 
are detailed enough to address real problems.

In conservation, there is o� en the percep-
tion that increased realism is needed to apply 
models to particular situations. This can result 
in the construction of highly complex models 
that may be unreliable because of uncertainties 
in parameter values (e.g. dispersal behavior 
and unknown temporal and spatial variation 
in vital rates). A reasonable approach is to 
develop models of intermediate complexity that 
have enough realism to be applied to particular 
conservation problems but avoid unnecessary 
complexity—that is, apply the principle of par-
simony (Burnham and Anderson 1992, 2002).

In the case of the Northern Spo� ed Owl, for 
example, an IBM was developed to evaluate 
competing plans for management of public 
lands in the Pacifi c Northwest of the United 
States. Because each plan could be expressed as 
a map showing the state of the landscape 100 
years in the future, a spatially explicit model was 
used to rank the two alternatives. This model 
was quite complex, including age-structure, 
spatial subdivision, and individual variation 
in vital rates (McKelvey et al. 1993; Noon and 
McKelvey 1996a, b). Other researchers have 
suggested that simpler models excluding age-
structure and spatial information (Wennergren 
et al. 1995) or using spatially explicit optimiza-
tion procedures (Hof and Raphael 1997) would 
have provided similar insights.

Second, models should be mechanistic. Those 
used to support conservation decisions should 
be based on current understanding of the key 
processes contributing to a system’s dynamics. 
Mechanistic models allow decision-makers to 
see how those processes are infl uenced by man-
agement options. The ability to provide a causal 
explanation will increase public understand-
ing and make it easier to gain public support 

for costly conservation decisions. In addition, 
mechanistic models may provide useful predic-
tions for application to situations outside the 
range of conditions on which the model was 
based.

Third, models should be forward-looking 
rather than predictive. The limited ability of 
models to accurately predict future events must 
be clearly stated. What actually occurs in the 
future is, at best, one of the many possible simu-
lated trajectories of stochastic model output. As 
the time horizon of a model becomes longer, the 
uncertainty in its predictions becomes greater. 
Outputs from these models are be� er treated as 
heuristic expectations that presumably bound 
the range of possible outcomes. 

Fourth, models should contain relevant 
variables, and their assumptions and results 
must be biologically realistic. Variables used as 
model input and the form of model output must 
be understandable and relevant to the conserva-
tion action. Presenting model results in techni-
cal and complex terms is certain to diminish 
their a� ractiveness to fi eld biologists and their 
value to decision-makers. Unnecessary com-
plexity increases the likelihood that data needs 
and model insights will be ignored.

Fi� h, models should be testable. Their 
hypotheses about how a system operates must 
make predictions that can be tested by experi-
ment or observation over both the short and 
the long term. For conservation purposes, this 
requires model output in the form of variables 
whose values can be measured in the fi eld. 
Given a model-based projection of population 
response to management action, is that response 
observed? If not, the model and the decision 
must be revisited and revised accordingly.

Sixth, models should fully explore system 
uncertainty (Possingham et al. 2001, Burgman 
et al. 2005). For the foreseeable future, conserva-
tion decisions will be made with an incomplete 
understanding of system dynamics. It is the 
responsibility of the modeler to fully explore 
the model’s uncertainty and make this known 
to decision-makers and fi eld biologists. In the 
case of population models, the risks of specifi c 
management decisions must be made explicit to 
the public.

Seventh, modeling eff orts benefi t from 
constructing multiple models, because o� en 
there is limited agreement among researchers 
and decision-makers on how and at what rate 
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nature works. Developing and testing compet-
ing models off ers the opportunity to examine 
diff erent mechanistic explanations of how pop-
ulations respond to external factors. Ideally, the 
models should be structured diff erently so that 
they have the potential to produce qualitatively 
diff erent projections. Each model’s validity is 
evaluated relative to the existing data, and the 
one that is most aligned with existing data gains 
in credibility. Discriminating among competing 
models in terms of their relative concordance 
between prediction and observation is the 
essence of adaptive management.

It is diffi  cult to develop models that have all 
these properties. For example, the more com-
plex types of population models, SEPMs, o� en 
meet the last six of the above criteria, but fail on 
the fi rst criterion of generality. A key point is to 
make models no more complex than they need 
to be for the problem under consideration or 
than the existing data allow, while retaining the 
mechanistic elements that make them useful in 
conservation. Finally, it is useful to consider the 
results of even the most mechanistic models not 
as precise predictions for the future but instead 
as heuristic expectations that provide a guide to 
the eff ects of management options.
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So far, the discussion of model types has 
not explicitly addressed how models can aid 
decision-making. O� en, there is no obviously 
“correct” model of a population’s or system’s 
dynamics, and decisions about an appropriate 
model are o� en made in the context of incom-
plete information. In fact, multiple plausible 
models about how a system works may be in 
competition, each predicting a range of possible 
outcomes with diff erent likelihoods. There may, 
however, be a “best” model in the sense of being 
most consistent with the available data. When 
competing scientifi c models are compared in 
the context of observable quantities or data, 
we move into the realm of statistical modeling 
(Nichols 2001). Decision theory, in the context of 
statistical model comparison, provides a step-
down process to aid decision-making when 
there is uncertainty about the “true” structure 
and dynamics of the system being modeled 
(Possingham et al. 2001, Burgman 2005). 

Several publications outline a process for 

making decisions about the management of 
dynamic systems that are poorly understood 
or for which there is li� le agreement on the fac-
tors that aff ect the state of the system (Hilborn 
and Mangel 1997, Burnham and Anderson 2002, 
Williams et al. 2002). The process, applicable 
to the conservation of imperiled bird species, 
for example, makes full use of available infor-
mation and current understanding to select a 
single “best model” or a set of models with 
similar support from a data set (Burnham and 
Anderson 2002, Johnson and Omland 2004). The 
decision-making process requires the develop-
ment of two or more competing models that 
bound the breadth of uncertainty and describe 
and project the dynamics of the population. 
Competing models share a common objective: 
supplying the information needed for making 
the management decision that maximizes the 
likelihood of realizing a goal within some set 
of constraints. Data relevant to the state of the 
system (e.g. population size and reproductive 
rates) are collected, and a measure of the prob-
ability of the data, given that the model is true, 
is computed. Through application of Bayes’s 
Theorem (Hilborn and Mangel 1997, Johnson 
and Omland 2004), this measure is then turned 
on its head and interpreted as a measure of the 
chance that the model is the appropriate descrip-
tion of the system, given the data. To determine 
which is the best descriptor of the population’s 
dynamics, models are compared in terms of 
their posterior likelihoods, given the data. That 
is, quantitative predictions of the models are 
compared with observations provided by an 
ongoing monitoring program. Insights from the 
current best model are then used to inform the 
conservation decision process.

The process of model comparison is itera-
tive, depending on a regular assessment of 
the state of the population. A� er each period 
of data collection, model predictions are again 
compared, and the current state of the system 
and the posterior probabilities of being the 
correct model are recomputed for each model. 
The current best model is then used as the basis 
for decision-making until the next assessment 
occurs. Management of hunted waterfowl 
provides an excellent example of the use of 
decision-theoretic models for conservation. 
The U.S. Fish and Wildlife Service uses the 
competing model procedure to make manage-
ment decisions regarding optimal harvest of 
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waterfowl populations (Nichols et al. 1995, 
Johnson et al. 1997, Johnson and Williams 1999). 
In this case, the competing models bracket the 
range of uncertainty associated with random 
environmental variation, incomplete control 
over harvest, and uncertainty about the biologi-
cal mechanisms that control population size.

A full discussion of the decision-theoretic 
approach and its uses in the adaptive manage-
ment process is beyond the scope of this review. 
However, it is apparent that these methods will 
be more commonly used in the future (Clark 
2005). Hilborn and Mangel (1997), Burnham 
and Anderson (2002), and particularly Williams 
et al. (2002) provide a good introduction to 
these methods.
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Ecology has been described as a science of 
case studies and rough generalizations rather 
than of general theory and exceptionless 
empirical laws (Shrader-Freche� e and McCoy 
1993). Despite the heuristic power of an ecologi-
cal perspective, there is li� le general theory to 
provide policy-related predictions. Given the 
imprecision of ecological theory, it off ers limited 
guidance to adjudicate public confl icts over 
conservation decisions. Confl ict will remain 
part of conservation practice as long as divi-
sions continue in society over the importance 
of biological diversity, our ethical responsibility 
to future human generations, and the severity 
of the conservation crisis. In an arena where 
consensus is diffi  cult, any tools that allow us 
to project the possible consequences of pres-
ent decisions should be fully exploited. The 
diversity and complexity of models employed 
in avian conservation is increasing rapidly, and 
their application is becoming more widespread. 
Use of models in avian conservation may not 
be a panacea, but neither is it a passing fancy. 
Thus, modelers and fi eld biologists are becom-
ing increasingly dependent on one another to 
achieve eff ective conservation. 

The evolution of models during the era of 
the personal computer—from limited ability to 
incorporate complex biological details to spatial 
and mechanistic models that assume detailed 
knowledge of an animal’s behavior—promotes 
synergy between modelers and fi eld biologists. 
Mechanistic models that incorporate more 

biological details may be more appealing to 
fi eld biologists, but they increase the burden on 
fi eld biologists to collect more kinds of data and 
to verify that the biological processes incorpo-
rated in models are correct. Does survival vary 
with density in the manner depicted? Are the 
movement rules in the model correct? Are the 
measures and correlates used to estimate annual 
variation in fecundity suffi  cient? Indeed, some 
models are too appealing. Increasingly, modelers 
must caution fi eld biologists about their reliance 
on complex models that incorporate great bio-
logical detail, whereas fi eld biologists previously 
cautioned modelers about their reliance on mod-
els that were too simple biologically. 

Collaboration between fi eld biologists and 
modelers is o� en a necessity for eff ective 
conservation. Field biologists need modelers 
to depict what they know about a system in an 
appropriate way within a formal framework. 
Modelers need fi eld biologists to provide data 
necessary for parameterization, to test whether 
processes incorporated in the model are correct, 
and to perform model validation. A model can 
guide collection of data and testing of mecha-
nisms. Data can guide selection of the most 
appropriate model and determine the appropri-
ate level of complexity (Burnham and Anderson 
2002). Facilitating the link between modelers 
and fi eld biologists are the statisticians. They 
play an essential role in designing methods of 
data collection and analyses needed to estimate 
parameters and compare model predictions with 
observed outcomes. Field biologists can remind 
modelers, statisticians, and policy makers of the 
weaknesses of particular models. Modelers and 
statisticians can indicate to fi eld biologists the 
defi ciencies in existing data. Productive col-
laborations of this sort involving one or more of 
the authors have promoted conservation eff orts 
with Northern Spo� ed Owls, Red-cockaded 
Woodpeckers, Marbled Murrelets, Snail Kites, 
and Florida Scrub-Jays. Field biologists can 
make great contributions to conservation by 
participating in such collaborations. 

A frequent theme of this monograph has 
been the onerous data requirements of new, 
complex types of models. The construction and 
application of population models for inform-
ing conservation decisions has been greatly 
hindered by the paucity of species that have 
received long-term fi eld studies of population 
dynamics (Shaff er et al. 2002), and by the lack 



MODELS IN AVIAN CONSERVATION 41

of standards and a repository for demographic 
databases. In the case of population models 
(e.g. spatially explicit models, metapopula-
tion models, and stochastic single-population 
models), the information required consists 
largely of typical demographic and behavioral 
data collected by fi eld biologists. However, the 
specifi city of information required (e.g. age- or 
stage-specifi c demographic rates estimated with 
respect to landscape characteristics), the dura-
tion of time needed to produce accurate vari-
ance estimates for vital rates, and the diffi  culties 
inherent in accurately estimating survival rates 
make large sample sizes and long-term fi eld 
studies a necessity. Furthermore, some types 
of data required by new population models 
have rarely been collected, notably information 
about dispersal and movement behavior. When 
incorporated into models, estimates of dispersal 
parameters are typically based on li� le or no 
data. Again, the burden is on fi eld biologists to 
produce these data if the predictive ability of 
models is to be improved. Finally, use of increas-
ingly more mechanistic models results in further 
demands on fi eld biologists to provide new 
kinds of data and experimentally confi rm pos-
tulated mechanisms. Particularly important is 
information about variation in vital rates, espe-
cially as it relates to annual variation, variation 
with habitat type, and variation with landscape 
features (e.g. proximity to edge). Field biologists 
need to keep potentially important sources of 
variation in mind when designing their sam-
pling scheme and analyzing their data. 

All models have key assumptions. Complex 
models may o� en make fewer simplifying 
assumptions than simple models, but they 
demand more data. The validity of basic sim-
plifying assumptions is an important issue with 
species distribution models and deterministic 
matrix population models. Key assumptions 
about dispersal pa� erns and mortality associ-
ated with movement plague metapopulation 
and spatially explicit models. In these cases, 
fi eld biologists can make major contributions by 
collecting data to test key model assumptions. 

Validation is a major issue for most of the 
models discussed. Models can be validated by 
testing primary (e.g. population projections) or 
secondary (e.g. dispersal distributions) predic-
tions, or by evaluating the ability of the model 
to replicate past system behavior (Bart 1995). 
Species distribution models can be validated 

from presence–absence data collected in fi eld 
surveys. Validation of population models and 
genetic models is more problematic. Population 
projections resulting from stochastic single-
population, metapopulation, and spatially 
explicit population models are diffi  cult to vali-
date directly, but one can test various secondary 
predictions of the models to evaluate their gen-
eral performance. For example, an SEPM might 
predict the proportion of young produced on 
a territory that are recruited into the breeding 
population to be a function of territory isola-
tion, a prediction that could readily be tested. If 
such a prediction proved false, it might indicate 
that a simpler (i.e. not spatially explicit) model 
is suffi  cient to capture the dynamics of the pop-
ulation. Applying the models to real landscapes 
to compare simulated and observed population 
dynamics may be especially instructive in this 
regard (e.g. Lindenmayer et al. 2003, Schiegg 
et al. 2005). Sensitivity analysis is also useful in 
directing a� ention to the parameters that ma� er 
most to model performance. For complex mod-
els, identifying important variables to improve 
model accuracy and to guide fi eld studies is the 
most signifi cant use of sensitivity analysis. 

Models can be useful tools for fi eld biolo-
gists, as well as managers, if employed wisely. 
Parameter estimates for complex models are 
typically too poor, and our understanding of 
nature too incomplete, to permit one to have 
much faith in specifi c predictions, such as 
the number of years it will take a population 
to become extinct, or the size of a population 
50 or 100 years into the future. But models 
can be used to ask whether, given our current 
understanding of the system as depicted in 
the model, a population will persist longer, or 
be larger, under one management approach 
than under another (Beissinger and Westphal 
1998, McCarthy et al. 2003, Lo� s et al. 2004). 
Ideally, these assessments would then be tested 
through an adaptive management process 
(Walters 1986, Ludwig and Walters 2002). The 
best conservation decisions will occur where 
cooperative interaction enables fi eld biologists, 
modelers, statisticians, and managers to con-
tribute eff ectively.
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