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Abstract: Poyang Lake, the largest freshwater wetland in China, provides critical habitat for
wintering waterbirds from the East Asian Flyway; however, landscape drivers of non-uniform
bird diversity and abundance are not yet well understood. Using a winter 2006 waterbird survey, we
examined the relationships among metrics of bird community diversity and abundance and landscape
characteristics of 51 wetland sub-lakes derived by an object-based classification of Landsat satellite
data. Relative importance of predictors and their sets was assessed using information-theoretic
model selection and the Akaike Information Criterion. Ordinary least squares regression models
were diagnosed and corrected for spatial autocorrelation using spatial autoregressive lag and error
models. The strongest and most consistent landscape predictors included Normalized Difference
Vegetation Index for mudflat (negative effect) and emergent grassland (positive effect), total sub-lake
area (positive effect), and proportion of submerged vegetation (negative effect). Significant spatial
autocorrelation in linear regression was associated with local clustering of response and predictor
variables, and should be further explored for selection of wetland sampling units and management
of protected areas. Overall, results corroborate the utility of remote sensing to elucidate potential
indicators of waterbird diversity that complement logistically challenging ground observations and
offer new hypotheses on factors underlying community distributions.

Keywords: wetlands; lakes; remote sensing; waterbird; biodiversity; conservation; spatial
autocorrelation; object-based image analysis; ecology; habitat

1. Introduction

More than 400 waterbird species, including long-distance migrants, critically depend on wintering
habitat in wetlands of warm low-latitude regions, large extents of which have been lost to agriculture,
residential sprawl and modifications to store or manage water resources in recent decades [1–8].
The United Nations has designated a number of conservation targets and wetlands of international
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importance under the Ramsar Convention [9]. However, the understanding of specific factors behind
non-uniform distributions and “hotspots” of bird diversity in wetlands is often limited by constrained
site access, logistics and financial costs [10,11]. These challenges may hinder allocation of management,
conservation and research targets within large wetlands and selection of meaningful habitat features
in predictive models of bird population dynamics and diversity.

Recognition of these constraints has stimulated efforts to characterize wetland habitat properties
relevant to landscape-scale bird distributions from cost-efficient geospatial and remote sensing
data [12–18]. For instance, significant statistical associations of wetland bird species richness and
spatial variables, such as wetland area, proportion of emergent wetland vegetation, or water depth,
have been reported by studies in the Rainwater Basin and Prairie Pothole Region of the USA [17,19].
Similarly, a number of terrestrial studies found strong relationships between bird diversity and remote
sensing indices of vegetation greenness, compositional heterogeneity, and structure based on both
passive and active remote sensing [20–26]. However, few studies have used remote sensing in the
analyses of broad-scale bird community patterns in large wetland regions with limited field access yet
high concentrations of resident and migratory avifauna [7,8].

This limitation can be also attributed to known constraints of remote sensing and spatial
analyses in wetlands, such as infamous “salt-and-pepper” noise arising from high spectral variation
within individual patches of wetland cover types [10,16,27,28]. Novel object-based image analysis
(OBIA) methods and machine learning image classification algorithms offer promise to enhance the
quality of wetland cover mapping and interpretation, although these techniques are still relatively
under-utilized [29–32]. Another caveat to spatial analyses of ecosystem and habitat properties is
presented by potential spatial dependence (autocorrelation), which may violate the assumptions
of independent and identically distributed errors in landscape models but in some cases indicate
ecological processes such as dispersal or species interactions [33–39].

The goal of this study was to explore the variation in diversity and abundance of resident and
migratory wintering waterbirds at Poyang Lake, the largest freshwater lake in China (Figure 1) and an
internationally important wetland conservation site under the Ramsar convention since 1992 [9,40]
using landscape characteristics derived from satellite remote sensing data. In the winter, this area
hosts large numbers of resident and migratory waterbirds from the East Asian Flyway, including
11 endangered and six globally threatened species [41,42]. Most of them utilize the habitats within
sub-lakes, or water bodies within the major wetland that become isolated during the low-water winter
stage [43,44]. Of particular conservation concern are tuber-feeding waterbirds, including the critically
endangered Siberian White Crane (Leucogeranus leucogeranus), which depend on multiple species of
Vallisneria, a submerged aquatic macrophyte (SAM) [43,45].

Land use and climate change, novel aquaculture practices and hydrological control projects
threaten the future ecological integrity of Poyang Lake wetlands and their long-term capacity to
sustain wintering birds [1,7,8,45–50]. However, the understanding of factors behind spatial patterns
of bird diversity and abundance is still limited [7,45,51,52], while primary habitat requirements have
been studied mainly for specific species and foraging guilds [43,45,53]. Previous multi-year analyses of
waterbird diversity and abundance have investigated their associations with basin-wide hydrological
and climatic factors [8] and remotely sensed extents and heterogeneity of major habitat cover types [7].
These studies, however, were based on bird censuses from 10–12 spatial observation units [7,8], while
whole-region monitoring has been limited by the high logistical cost of repeated basin-wide surveys
in this large wetland [42,44,54]. These constraints call for further exploration of remote sensing’s
potential to characterize habitat features related to diversity and abundance at spatial scales relevant
to conservation and management of Poyang Lake protected areas.

To address this call, we examined the associations between several metrics of waterbird diversity
and abundance based on a basin-wide ground survey in December 2006 and remotely sensed landscape
characteristics of the sub-lake neighborhoods extracted by the object-based image analysis of the
Landsat TM satellite data. Here we explored which landscape characteristics of the sub-lakes were
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most consistently and strongly associated with the observed bird diversity and abundance patterns
across the seasonally flooded wetland area and to what extent the detection and interpretation of these
relationships was affected by spatial autocorrelation in waterbird and landscape variables and their
statistical models.
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Figure 1. Study area and waterbird survey in December 2006. The background images represent
Landsat 5 TM scene as a color composite of bands 4 (near-infrared), 3 (red) and 2 (green) for the
wetland area (RGB), and a grayscale image of band 4 for the surrounding mixed-cover landscape.

2. Materials and Methods

2.1. Study Area

Poyang Lake is located in the middle Yangtze River basin, Jiangxi Province, China
(28˝251N–29˝451N, 115˝481E–116˝441E; Figure 1). Its surface exhibits considerable year-round
hydrological variation where water coverage at the highest summer flood stage in July–August can
exceed 4000 km2, while in winter it reduces to less than 1000 km2 [55,56] exposing rivers, channels and
smaller sub-lakes. At these sub-lakes, waterbirds are often observed within 500 m or less of the water
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boundary along the inundation gradient from water 0.5–5 m deep to mudflats and higher-elevation
emergent grasslands [44,45]. Some of these sub-lakes have been important diversity hotspots in local
nature reserves [43,44,54,57].

The immediate spatial neighborhoods of winter sub-lakes often have gentle slopes with slow
change in elevation and belt-shaped zonation of emergent wetland cover types ranging from shallow
water to mudflats to emergent grassland dominated by sedges (Carex spp.) and forbs [45,57,58]. Some
of the submerged aquatic macrophyte species (e.g., Vallisneria spp. and Stuckenia pectinata) overwinter
in the form of tubers buried in lake sediment. Although “invisible” to remote sensors, these tubers
provide critical food resources to bird foragers from the tuber-feeding guild [40,43,45,59]. Some areas
of Poyang Lake also retain photosynthetically active submerged and floating macrophytes from other
taxa during the cool growing season [44,51]; however, the specific role of this vegetation in wintering
waterbird habitat relationships remains unclear to date.

2.2. Waterbird Survey of 2006 and Dependent Variables

Our study used the data from the basin-wide point-count waterbird survey in 15–25 December
2006, obtained with permission from the State Key Lab of Remote Sensing Science (the Chinese
Academy of Sciences, Beijing, China) who jointly organized it with the State Key Lab of Poyang
Lake Ecology and Environment at Jiangxi Normal University, Nanchang, China, and local nature
reserves [44,60]. The survey included 138 target locations representing permanent sub-lakes, water
reservoirs near cities and selected vantage points at the shorelines of rivers and channels within the
Poyang Lake area (Figure 1). Bird species identification and counts were performed by field technicians
using binoculars and telescopes [42,60] and then reported as summaries for each observation location
along with one, rarely two, geolocated GPS point(s) marking the primary spatial position of observers.
For the purposes of this study, we focused on the data from 51 sub-lakes representing permanent
water bodies in western, southwestern and southern part of the lake basin (Figure 1) that were part
of the seasonally inundated wetland area. Because of the uncertainty in spatial position of observers
relative to birds [60], the whole sub-lakes were used as the units of spatial analysis. It should be also
acknowledged that the single-event 2006 bird survey represented only a phase in the wintering season
and did not allow us to estimate the observation error or extrapolate results beyond this time frame.
We further discuss the implications of this constraint in Section 4.3 below.

Our analysis specifically targeted resident and migratory Poyang Lake waterbirds from the
orders of Podicipediformes, Pelecaniformes, Suliformes, Ciconiformes, Anseriformes, Gruiformes
and Chradriiformes. Six major foraging guilds were defined among them based on the long-term
Poyang Lake ecological research by the International Crane Foundation [40,45] and other studies in this
region [7,8,43,44,53,59,61,62] and other wetlands [63]: (1) tuber feeding; (2) sedge/grass eating; (3) seed
eating/dabbling; (4) benthic insect/larvae eating; (5) fish eating; and (6) zooplankton eating. Four size
groups were also designated: (1) larger floating birds; (2) smaller floating birds; (3) large waders; and
(4) small shorebirds. From the bird counts at 51 selected sub-lakes, we quantified dependent variables
(Table 1) for the models of their relationships with remotely sensed wetland characteristics. These
included four alpha-diversity indices (species richness, or the total number of species per sub-lake;
Shannon index; number of foraging guilds and number of size groups), total number of waterbirds
and the number of tuber-feeders. This latter guild was given special attention because it includes
conservation targets of international importance with four out of five species that are threatened or
endangered with recently reported declines in the study region [41,59].

Both abundance variables had non-normal distributions due to large number of small values,
similar to other studies [7,8,18]. For the number of birds, natural logarithm transformation significantly
improved the normality. However, the number of tuber-feeders had zero values at 12 sub-lakes. Thus,
for the number of tuber-feeders, we applied and compared two different strategies: (1) statistical
transformation of their counts using natural logarithm+1 for linear regression models to alleviate
the skewness and compare results with models with other response variables; and (2) the alternative
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negative binomial regression modeling of the non-transformed variable to address the potential zero
inflation (discussed in Section 2.4 below).

Table 1. Dependent (response) variables used in regression models and their basic descriptive statistics
for 51 sub-lakes from December 2006 Poyang Lake survey.

Variable Description Min–Max Mean (st. dev.)

Species richness Number of waterbird species per sub-lake 2–23 9.1 (5.44)

Shannon index

Diversity index which accounts for both the number of
species and evenness of their abundance calculated as

H1 “ ´
ř R

i“1pilnpi, where pi is the proportion of individuals
from species i in the whole dataset and R is the total number of

species in the dataset

0.2–2.03 1.1 (0.44)

Number of
food guilds

The number of foraging guilds represented per sub-lake,
out of 6 groups after [45]: tuber-feeding, sedge/grass-eating,

seed eating/dabbling, benthic insect/larvae eating, fish eating
and zooplankton eating birds

1–6 3.9 (1.38)

Number of
size groups

The number of bird groups defined by foraging habit (wading
versus floating/diving birds) and size (average body mass

greater or less than 2 kg for floating birds, average body length
greater or less than 0.8 m for waders)

1–4 3.2 (0.98)

Total waterbird abundance Total number of waterbirds per sub-lake 17–94,658 7201 (16,262)

Abundance of tuber
feeding birds

The number of birds from the tuber-feeding foraging guild
including Leucogeranus leucogeranus, Grus monarcha, Grus vipio,

Anser cygnoides and Cygnus columbianus
0–46,395 2750 (8185)

2.3. Independent Variables Based on Remote Sensing Data

We characterized major wetland cover types and their landscape metrics for subsequent bird
diversity and abundance analyses (Figure 2) using a terrain-geocorrected (Level 1T) Landsat 5 TM
satellite image of 6 January 2007. Digital numbers from six 30-m spatial resolution bands representing
visible (bands 1–3), near-infrared (band 4) and shortwave-infrared (bands 5 and 7) portions of the
electromagnetic spectrum were corrected to radiance at the sensor using sensor-specific radiometric
calibration coefficients [64] and then to ground surface reflectance using 6S algorithm [65,66]. We then
isolated wetland area by digitizing its hydrological boundaries shaped by levees using a high-resolution
basemap imagery layer in ArcGIS 10 (Esri Inc., Redlands, CA, USA). Basemap images in ArcGIS are
compiled from high-resolution remote sensing data provided by Esri partners and streamlined directly
into the ArcMap window [67].
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Figure 2. Major steps in the study analysis of remote sensing and waterbird survey data.

We then segmented wetland area into small spectrally homogeneous groups of pixels, i.e., objects,
followed by their statistical classification into wetland cover types (Figure 2) using a multiresolution
segmentation tool in eCognition 8.0 software (Trimble Inc., Sunnyvale, CA, USA) which allows for
flexibility in the output object sizes. Due to the lack of prior information on wetland patch structure,
segmentation parameters prioritized spectral band values in object generation, while shape and
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compactness were kept at low values of 0.1 each. Following Reference [57], we used a value of 8 for
the scale parameter which controls maximum level of heterogeneity and object size [68]. As a result,
most primitive objects exceeded Landsat pixels, and their median size was ~19 pixels.

Prior to classification, we visually interpreted and labeled objects corresponding to residential
and other human land cover within sub-lake neighborhoods using again the high-resolution basemap
imagery in ArcGIS 10. Then, we classified wetland area into common cover types that were
hypothesized to represent suitable and non-suitable habitat (Table 2): Open water, mudflat, sand,
flooded vegetation, green emergent C3 grasses, senescent grasses and burned vegetation. For these
classes, we assigned 222 objects for classification training and 300 separate objects for accuracy
assessment using several sources of reference data from March 2006 to April 2008 (because no field
assessments of wetland cover were performed at the time of the 2006 bird survey). Reference objects
were selected to represent homogeneous regions of target cover types (Table 2) based on (1) their
spatial overlap with transects and locations of several field surveys at Poyang Lake in March 2006,
March 2007, December 2007, April 2008 where vegetation and other types were recorded along with
field photographs of surveyed areas (performed by the State Key Lab of Remote Sensing Science
(the Chinese Academy of Sciences, Beijing, China); and (2) visual interpretation of cover types from
the reference high-resolution imagery from DigitalGlobe Worldview-1 and QuickBird satellites for
November and December 2007, provided for a portion of the study area by the National Aeronautics
and Space Administration (NASA) and The National Geospatial-Intelligence Agency (NGA) NextView
program [69]. Classification was performed in open-source Weka 3.6.5 software (University of Waikato,
Hamilton, New Zealand; [70]) using a supervised k-nearest neighbor algorithm. Object mean values of
Landsat bands 3–5 and 7 and spectral indices representing normalized differences between bands 3
and 4, 2 and 4 and 2 and 5 were used as discriminating features. Classification accuracy was quantified
as the agreement between reference classes of test objects and their respective mapped categories using
confusion matrices.

Table 2. Poyang Lake wetland cover types used in satellite image classification.

Cover Type Name Description

Water Inundated areas with water coverage above the ground or vegetation
surface: sub-lakes, channels, pools, rivers etc.

Mudflat Exposed lake bottomland directly adjacent to the water body with
sparse (<30%) or no plant cover

Emergent grassland Green photosynthetically active emergent wetland vegetation
dominated by C3 grasses and forbs

Flooded vegetation

Green photosynthetically active vegetation with “wet” spectral signal
(significantly lower near- and short-wave-infrared range than emergent
grasses); includes inundated emergent, floating and submerged aquatic
macrophytes and their mixtures

Senescent grasses
Perennial vegetation that maintains senescent biomass during the
winter, typically dominated by mixed warm-season C4-grasses and
reeds that grow in higher-elevation sub-lake and channel periphery

Burned vegetation Recently burned grassland with distinct dark soil/ash and little or no
vegetation regrowth

Human land use Areas of active human land use adjacent to Poyang Lake wetlands
(residential, agriculture, extraction, etc.)

From the classification results, we selected open water and flooded vegetation together as
proxies of the extent of inundated areas at the time of image acquisition. We then constructed
500-m buffer neighborhoods around these sub-lake areas in ArcGIS 10 (Figures 1 and 2) and within
those estimated thirteen metrics subsequently used as candidate predictor variables in diversity and
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abundance models (Table 3). These variables were informed by previous research at Poyang Lake
and other wetlands [17,19,43,45,60] and selected so as to minimize both conceptual redundancy and
statistical multi-collinearity. Several independent variables had highly skewed distributions that were
corrected to improve normality using natural log transformation (total sub-lake area) and square root
transformation (proportions of mudflat, emergent grassland and flooded vegetation).

Table 3. Independent variables used in regression models of Poyang Lake waterbird abundance and
diversity, summarized for 500-m neighborhoods around sub-lakes within the natural wetland area.

Category Name (Model Code) Definition

Area Total sub-lake unit
area (area)

Total area of the sub-lake water body
and its 500-m buffer neighborhood, m2

Prevalence of habitat cover
types within sub-lake
neighborhood

Percent mudflat
(%mudflat)

Proportion of the area classified as
mudflat within the sub-lake neighborhood

Percent emergent
vegetation (%emgrass)

Proportion of the area classified as emergent
grassland within the sub-lake neighborhood

Percent flooded vegetation
(%floodveg)

Proportion of the area classified as flooded
vegetation within the sub-lake neighborhood

Spectral
greenness

Normalized Difference
Vegetation Index (NDVI)
of emergent grassland
(ndvi emgrass)

Spectral index of vegetation greenness, here calculated as
mean object-level NDVI from Landsat TM bands 3 (red) and
4 (near-infrared) within green emergent grass class for each
sub-lake: NDVI= (Band 4 ´ Band 3)/(Band 4 + Band 3)

Normalized Difference
Vegetation Index (NDVI)
of mudflat (ndvi mudflat)

Calculated using the same formula as above as
mean of the objects within the mudflat class

Spectral heterogeneity
of habitat cover types

Spectral heterogeneity of
mudflat (stdev Red mud)

Standard deviation of the object-level mean values for
Landsat TM band 3 (red) among the mudflat image objects

Spectral heterogeneity of
flooded vegetation
(stdev Red floodveg)

Standard deviation of the object-level mean values for
Landsat TM band 3 (red) among the flooded vegetation
image objects

Spectral heterogeneity
of emergent vegetation
(stdev Red emgrass)

Standard deviation of the object-level mean values for
Landsat TM band 3 (red) among the emergent C3 grass
image objects

Heterogeneity
of primitive
patch shapes within
habitat cover types

Heterogeneity of shape
index for mudflat
(stdev SI mud)

Standard deviation of the shape index
(perimeter of the image object divided
by four times the square root of its area [66])
for primitive image objects classified as mudflat within the
sub-lake neighborhood

Heterogeneity of shape index
for emergent vegetation
(stdev SI emgrass)

Standard deviation of the shape index (perimeter of the
image object divided by four times the square root of its
area [66]) for primitive image objects classified as emergent
grassland within the sub-lake neighborhood

Potential human disturbance
within sub-lake neighborhood

Percent of burned vegetation
area (%burnveg)

Proportion of the area classified as burnt vegetation within
the sub-lake neighborhood

Percent of human land
use (%human LU)

Proportion of the area representing active human land use
(residential or agriculture) within the sub-lake
neighborhood

2.4. Model Selection and Diagnostics for Spatial Autocorrelation

For each response variable (Table 1), we first constructed multivariate ordinary least squares (OLS)
linear regression models with different sets of predictors in MATLAB R2012a software (MathWorks
Inc., Natick, MA, USA). We then ranked these models using the Akaike Information Criterion corrected
for the small sample size (AICc) following [71]:

AICc “ ´2lnL` 2k`
2kpk` 1q
pn´ k´ 1q

, (1)

where lnL is the model log-likelihood, k is the number of parameters to be estimated and n is the
number of observations in the model. This approach was chosen to allow the relative comparison
of models with different predictor sets, as well as OLS and spatial regression results for a given
predictor combination. However, with 13 predictor variables, the number of their theoretically possible
combinations becomes extremely large, and the risk of multi-collinearity increases as more predictors
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are included in regression. For these reasons, we estimated regression parameters and AICc only
for the models with 5 or fewer predictors, and for the final set of candidate models we considered
only the models within 2 AICc units from the minimum AICc [71]. To further account for the zero
values in the number of tuber-feeders, we separately estimated a zero-inflated negative binomial
regression in R (Version 3.2.4; R Development Core Team 2016, Vienna, Austria) with the package pscl
(Version 1.4.9 [72,73]). This approach estimates a two-component negative binomial model for bird
counts with the assumption that the data may include both “true” zero counts for the tuber-feeders,
and “excess” zeros, e.g., sub-lakes that are never visited by this guild [73]. The output models were
ranked using AICc, and selected predictor sets with the strongest support were compared to those in
OLS results.

Next, we examined spatial dependence in response and predictor variables using Anselin’s local
indicators for spatial association (LISA; [74]) in GeoDa spatial analysis software [75] and then tested
for significant spatial autocorrelation in OLS regression. A matrix of spatial weights W was calculated
based on Euclidean distances between sub-lakes and then used to perform Lagrange Multiplier (LM)
tests for spatial dependence in OLS. When significant spatial autocorrelation was detected, we further
estimated two maximum-likelihood linear spatial autoregressive models in GeoDa [75]. The first one
was the spatial lag model, which accounts for a second-order spatial interaction between localities
based on their proximity:

y “ Xβ` ρWy` ε , (2)

where β indicates coefficients for the predictor variables X, ρ is the spatial autoregressive coefficient on
the matrix of weights W applied to response values from spatial neighbors of each data point and ε

is the random error term. The second form of spatial regression was the spatial error model which
accounts for spatial autocorrelation in the model error structure:

y “ Xβ` λWε` ε , (3)

where λ is the spatial autoregressive coefficient for the error term. We then compared statistics for
individual predictors and model AICc among OLS and spatial regression results.

3. Results

3.1. Image Classification Results

The supervised classification of the Landsat image had the overall accuracy of 94.3% and kappa
statistics value of 0.93 (Table 4). The confusions occurred between turbid shallow water and mudflat,
flooded vegetation and mudflat or burned vegetation, and between emergent and senescent vegetation
in mixed-cover areas, similar to other studies of this region [10,57,58]. Sand was detected in 15
sub-lakes, and only in three cases exceeded 2% of sub-lake area. Given limited presence of this class
and its primary concentration near dunes in the upper northern part of the study region (Figure 3),
sand metrics were not included in subsequent regression analysis.

Table 4. Confusion matrix for the object-based k-nearest neighbor classification of the study area.

Assigned Class:
Reference Class User’s

Accuracy %Emergent
Grassland Mudflat Senescent

Grassland
Flooded

Vegetation Water Burned
Vegetation Sand

Overall Accuracy 94.3%, Kappa 0.934

Emergent grassland 48 3 2 90.6
Mudflat 47 1 2 94.0

Senescent grassland 2 36 94.7
Flooded vegetation 1 37 3 90.2

Water 2 1 40 93.0
Burned vegetation 35 100

Sand 40 100
Producer’s accuracy,% 96.0 94.0 90.0 92.5 100 87.5 100
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Figure 3. Major wetland cover types within sub-lakes included in December 2006 Poyang Lake
waterbird surveys (left; overlaid on Landsat 5 TM grayscale image of band 4 (near-infrared)
and characterized with supervised object-based k-nearest neighbor classification of the Landsat
satellite image from 6 January 2007) and sub-lake 500-m neighborhood buffers (right; overlaid on
Landsat 5 TM RGB composite of bands 4, 3 (red) and 2 (green)).

3.2. Spatial Patterns of Response and Predictor Variables

Total number of species varied from two to 23 among 51 sub-lakes (Table 1), and the proportional
species turnover [76] was equal to 0.86, suggesting that an average sub-lake contained only ~14%
of the overall species richness. Local spatial autocorrelation of response variables was not uniform
across the landscape and concentrated in a few statistically significant “hotspots” (Figure 4). Species
richness, Shannon index, number of food guilds, number of birds and number of tuber-feeders showed
significant clustering of spatially close high values at several lakes within Poyang Lake National
Nature Reserve (PLNNR; Figure 4a–c,e,f). For species richness, Shannon index and the number of
tuber-feeders there were also clusters of low values and high-low associations in the southeastern part
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of the study area (Figure 4a,b,f) within the Nanjishan National Nature Reserve. The number of size
groups showed several low-high and high-low instances of negative spatial dependence, including
those in PLNNR reserve (Figure 4d).Remote Sens. 2016, 8, 462 10 of 21 
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in the southeastern region and several clusters of high and low values (Figure 4i). Sub-lake area had 
clusters of low values associated with small lake groupings in northeastern and southern portions of 
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cluster of high values in PLNNR and clusters of low values in other parts of the region (Figure 4k). 

Figure 4. Sub-lake clusters of significant spatial dependence (p < 0.05) determined using Local
Indicators of Spatial Association (LISA) for (a) species richness; (b) Shannon index; (c) number
of food guilds; (d) number of size groups; (e) number of waterbirds; (f) number of tuberfeeders;
(g) proportion of flooded vegetation; (h) NDVI of mudflat; (i) NDVI of emergent grasses; (j) lake
area; and (k) standard deviation of red reflectance for flooded vegetation. For positive spatial
dependence, “High-High” indicates significant clustering of high values in each variable and
“Low-Low”—significant clustering of low values. Negative spatial dependence is represented by
“High-Low” and “Low-High” significant associations.

Among predictor variables, the proportion of flooded vegetation and mudflat NDVI had
significant aggregations of high values in the southeastern portion of study area and clusters of
low values in PLNNR (Figure 4g,h). The NDVI of emergent grasses also showed clusters of high
values in the southeastern region and several clusters of high and low values (Figure 4i). Sub-lake area
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had clusters of low values associated with small lake groupings in northeastern and southern portions
of the study area (Figure 4j). Standard deviation of red reflectance of the flooded vegetation showed a
cluster of high values in PLNNR and clusters of low values in other parts of the region (Figure 4k).
Significant local clustering in both response and predictor variables based on these results indicated
potential risk of violating assumptions of the ordinary linear regression due to spatial dependence.

3.3. Variable Selection in Regression Models

Relative importance of independent variables in the univariate OLS models varied among
diversity and abundance metrics (Table 5). Spectral greenness (NDVI) of mudflat with a negative effect
was consistently among the strongest predictors, while other important variables included proportion
of flooded vegetation with negative effect, for the numbers of food guilds and size groups—total
sub-lake area with positive effect, and for species richness and Shannon index—spectral heterogeneity
of mudflat or flooded vegetation, respectively (Table 5). Combinations of 2–3 of these variables were
also frequently included in the lowest AICc multivariate models for each response variable (Table 6).
However, none of the univariate models in Table 5 was within 2 AICc units from the minimum-AICc

multivariate models in Table 6.

Table 5. Relative importance of independent variables with p-value > 0.05 in univariate ordinary least
squares (OLS) regression models of diversity and abundance response variables, sorted by Akaike
Information Criterion (AICc) in ascending order. The AICc values of the intercept-only models are
provided as reference.

Dependent Variable: Species
Richness Shannon Index Number of Food Guilds

Independent Variable R2 AICC
Independent

Variable R2 AICc
Independent

Variable R2 AICc

ndvi mudflat 0.35 303.2 ndvi mudflat 0.15 64.1 ndvi mudflat 0.21 178.5
Sqrt (%floodveg) 0.21 313.4 Sqrt (%floodveg) 0.12 65.5 Sqrt (%floodveg) 0.12 184.1
Stdev Red mud 0.11 319.3 Stdev Red floodveg 0.08 67.9 Ln(area) 0.08 186.1
Intercept-only 0.00 322.7 Intercept-only 0.00 69.81 Intercept-only 0.00 188.3

Dependent Variable: Number of Size
Groups Ln (Number of Birds) Ln (Number of Tuber

Feeding Birds + 1)

Independent Variable R2 AICc
Independent

Variable R2 AICc
Independent

Variable R2 AICc

ndvi mudflat 0.15 149.2 Ln(area) 0.2 216.0 ndvi mudflat 0.09 267.3
ndvi emgrass 0.09 152.4 ndvi mudflat 0.13 220.4 Sqrt (%floodveg) 0.08 267.4
Ln (area) 0.08 153.2 Intercept-only 0.00 225.2 Intercept-only 0.00 269.6
Intercept-only 0.00 155.2

Multivariate models within 2 units from the lowest-AICc outcome included three to eight
candidate sets for a given response variable (Tables 6 and 7). These frequently included sub-lake
area with positive effect and mudflat NDVI and proportion of flooded vegetation with negative
effects (Table 6). The NDVI of emergent grasses with positive effect was also included in OLS
models for all dependent variables except the number of tuber-feeders (Table 6). Other predictors in
the highest-support multivariate models differed among response variables and included spectral
heterogeneity of flooded vegetation with positive effect, proportions of human land use with positive
effect and burned vegetation with negative effect, and for abundance response variables—also, object
shape heterogeneity of emergent grassland with negative effect (Table 6). Predictors selected by the
highest-rank zero-inflated negative binomial models for the number of tuber-feeders (Table 7) were
consistent with the OLS results (Table 6), including sub-lake area and NDVI of emergent grassland
with positive effects and object shape heterogeneity of emergent grassland, proportion of burned
vegetation, NDVI of mudflat, and proportion of flooded vegetation with negative effects in the count
model component. The latter two predictors were also selected in the zero-inflated model component
with positive effects (Table 7).
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Table 6. Multivariate ordinary least squares (OLS) and spatial regression models for waterbird diversity
and abundance response variables within 2 units of AICc from the lowest AICc OLS model.

Models R2 OLS AICc OLS AICc Lag AICc Error Akaike Weight

Dependent Variable: Species Richness

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass ´ ndvi
mudflat ´ stdev SI emgrass 0.54 294.38 297.17 291.54 0.60

´Sqrt(%floodveg) + ndvi emgrass – ndvi mudflat
´ stdev SI emgrass 0.50 295.94 298.60 293.92

´Sqrt(%floodveg) + ndvi emgrass ´ ndvi mudflat
´ stdev SI emgrass + stdev Red emgrass 0.52 296.15 298.83 292.34 0.40

Dependent Variable: Shannon Index

´Sqrt(%floodveg) + ndvi emgrass + stdev Red floodveg
+ stdev Red emgrass 0.40 52.69 * 0.27

´Sqrt(%floodveg) + ndvi emgrass + stdev Red floodveg 0.37 52.76 * 0.26

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass +
stdev Red floodveg 0.39 53.01 * 0.23

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass +
stdev Red floodveg + stdev Red emgrass 0.42 53.90 * 0.15

´Sqrt(%floodveg) + ndvi emgrass + stdev Red floodveg
+ stdev Red emgrass ´ ndvi mudflat 0.41 54.58 * 0.10

Dependent Variable: Number Of Food Guilds

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass 0.38 169.73 170.45 172.24 0.35

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass
´ ndvi mudflat 0.41 170.23 * 0.4

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass ´ %emgrass 0.41 170.29 171.18 172.96 0.25

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass
+ %human LU 0.39 171.55 172.72 174.24

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass
´ stdev SI emgrass 0.39 171.73 172.55 174.42

Dependent Variable: Number of Size Groups

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass 0.33 140.55 * 0.25

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass
+ %human LU 0.35 141.59 * 0.15

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass
´ ndvi mudflat 0.35 141.71 * 0.14

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass ´ %emgrass 0.35 141.72 * 0.14

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass ´ %burnveg 0.35 141.89 * 0.13

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass ´ %mudflat 0.34 142.41 * 0.10

Ln(area) ´ Sqrt(%floodveg) + ndvi emgrass
+ stdev Red floodveg 0.34 142.45 * 0.10

Dependent Variable: Natural Log of the Total Number of Birds

Ln(area) + ndvi emgrass ´ ndvi mudflat
´ stdev SI emgrass 0.4 207.90 209.62 210.56 0.23

Ln(area) ´ ndvi mudflat ´ stdev SI emgrass 0.35 209.19 * 0.44

Ln(area) + ndvi emgrass ´ ndvi mudflat ´ stdev SI
emgrass ´ %burnveg 0.41 209.24 211.47 211.59

Ln(area) ´ ndvi mudflat ´ stdev SI emgrass
´ %burnveg 0.38 209.83 * 0.33

Ln(area) + ndvi emgrass ´ ndvi mudflat ´ stdev SI
emgrass ´ Sqrt(%floodveg) 0.41 209.84 211.55 212.63

Dependent Variable: (Natural Log + 1) of the Number of Tuber Feeding Birds

Ln(area) ´ Sqrt(%floodveg) 0.16 264.41 263.87 265.17 0.36

Ln(area) ´ Sqrt(%floodveg) ´ stdev SI emgrass 0.19 264.79 264.56 266.11 0.22

´ ndvi mudflat ´ stdev SI emgrass 0.14 265.19 264.54 265.61 0.28

Ln(area) ´ Sqrt(%floodveg) ´ %burnveg 0.17 266.15 266.03 267.45

Ln(area) ´ ndvi mudflat ´ stdev SI emgrass 0.17 266.19 265.51 266.97 0.14

´ ndvi mudflat 0.09 266.25 *

%emgrass ´ ndvi mudflat ´ stdev SI emgrass 0.17 266.31 *

´ Sqrt(%floodveg) 0.08 266.39 *

* Spatial autocorrelation diagnostics not significant with p-value > 0.05.
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Notably, the strongest multivariate models for different response variables often included similar
predictors. For instance, sub-lake area, proportion of flooded vegetation and NDVI of emergent
grassland were often selected together and formed the key component of all lowest AICc models
for number of food guilds and number of size groups (Table 6). In the models for species richness
and two abundance metrics, NDVI of mudflat was often included together with heterogeneity of
object shape index for emergent grasses (Tables 6 and 7). The interactions among predictors were also
tested; however, most of them appeared to be not significant and did not contribute explanatory power
comparable to the best-fit multivariate sets in Table 6.

Table 7. Predictors selected by the highest-rank zero-inflated negative binomial regression models for
the number of tuber-feeding birds within 2 units of AICc from the lowest AICc model.

Count Model Zero-Inflation Model AICc Akaike Weight

Ln(area) ´ stdev SI emgrass ndvi mudflat + Sqrt(%floodveg) 661.4 0.28
Ln(area) ´ stdev SI emgrass Sqrt(%floodveg) 661.5 0.27

Ln(area) ´ stdev SI emgrass ´ Sqrt(%floodveg) Sqrt(%floodveg) 663.0 0.13
Ln(area) ´ stdev SI emgrass ´ Sqrt(%floodveg) ndvi mudflat + Sqrt(%floodveg) 663.3 0.11

Ln(area) – stdev SI emgrass ´ ndvi mudflat Sqrt(%floodveg) 663.3 0.11
ndvi emgrass ´ ndvi mudflat ´ %burnveg Sqrt(%floodveg) 663.3 0.11

3.4. Spatial Autocorrelation in Linear Regression Models

Significant spatial autocorrelation was detected in the OLS models for species richness, number
of food guilds and two abundance variables (Table 6). Spatial regression successfully corrected this
effect in most cases as indicated by GeoDa diagnostics of these models; however, goodness-of-fit was
only marginally affected. Most of the changes in AICc with spatial regression were within 2 units from
a corresponding OLS model (Table 6), in part because both spatial models estimate one additional
parameter relative to OLS, which penalized their AICc values.

For species richness, spatial error model had stronger support than spatial lag model when
significant spatial autocorrelation was detected (Table 6), and the lambda coefficient in spatial error
model was significant with p-value < 0.05. For the number of food guilds and the number of birds,
spatial lag model had higher support than spatial error regression (Table 6) in case of significant spatial
dependence in OLS. Applying the lag model also slightly changed model ranks and reduced the
number of candidate models within 2 units of AICc from the minimum (Table 6). For the number of
tuber-feeders, spatial lag models had slightly lower AICc than corresponding spatial error models
(Table 6). However, the latter models for this response variable no longer had significant spatial
dependence for weight matrix (p-values > 0.05). For the number of size groups and Shannon index,
LM tests in GeoDa did not detect significant spatial dependence in favor of spatial regression.

4. Discussion

4.1. Remotely Sensed Indicators of Poyang Lake Bird Diversity and Abundance

The degree to which spatial and temporal biodiversity patterns can be interpreted with
indirect but cost-effective geospatial habitat proxies is an important pre-requisite for comprehensive
landscape-scale monitoring of vulnerable ecosystems globally. Our analysis highlighted several
landscape variables associated with waterbird diversity and abundance at Poyang Lake, China based
on the remotely sensed characteristics of their wintering habitat from Landsat satellite data. In
particular, statistical importance of sub-lake open water area was consistent with evidence from other
wetland regions [12,13,17,77,78] and the significance of shallow water extent in waterbird abundance
models in a previous Poyang Lake study [7]. This outcome likely represented the effect of lake size on
the amount and potential diversity of food resources and foraging space.

Strong negative effect of mudflat NDVI on all response variables indicated the importance of
mudflats with lower green vegetation cover and/or wetter surface. Mudflats with such properties may
represent lake beds with more recent post-flood exposure [10,51] that contain aquatic invertebrates,
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vegetation seeds, propagules and tubers of the summer-season aquatic macrophytes [40,43] and, thus,
support birds of different size and foraging preferences. The size of mudflat was previously reported
to positively contribute to bird abundance, and negatively—to species richness based on the study
of 10 Poyang Lake sub-lakes [7]; however, in our models the proportion of mudflat area was not as
important. The latter result may indicate potential availability of unoccupied wintering habitat, with
sub-lake environments providing more suitable territories and resources than current bird populations
could utilize.

Positive association of emergent grassland NDVI with bird diversity and abundance was
consistent with previous terrestrial studies [14,20,24,37] and a recent analysis of selected waterbird
species’ habitat across Yangtze River wetlands [12]. These relationships may be attributed to potential
correlations between NDVI and plant density, biomass and foliar nutrient content [79,80], which play
important role in habitat quality [53,62]. At Poyang Lake, green sedges provide a critical food resource
to Anatidae of the grass-eating guild, which forage in large numbers [12,45,49,53,60] and contribute to
both bird diversity and abundance at sub-lakes with this vegetation type. However, relative size of
emergent grassland was not among the main predictors, suggesting, again, that the available grassland
habitat could exceed the demand of surveyed bird populations.

The importance of metrics related to variation in spectral and shape properties within grasslands
and flooded vegetation was consistent with the expectation that more heterogeneous habitats may
favor diverse avian communities and foraging opportunities [7,13,21,26,81]. A previous study of
Poyang Lake bird diversity and abundance from 10 sub-lakes [7] reported the importance of the
number of wet meadows and a form of shape index for waterbodies that were also related to habitat
complexity. While specific ecological roles of heterogeneity should be investigated in the future, this
collective evidence suggests that landscape complexity of wetland habitats should be considered in
the analyses of diversity and abundance in addition to presence and extent of the relevant cover types.
Estimation of heterogeneity metrics may especially benefit from remote sensing due to comprehensive
spatial coverage of limited-access wetlands.

Significant negative correlation of most diversity and abundance variables with the proportion
of flooded vegetation raises a question on what features make the sub-lakes less conducive to high
diversity and abundance [60]. Potential ecological benefits of aquatic macrophytes growing in winter
to waterbirds are less well understood at Poyang Lake than the importance of emergent grasses [49,53]
or tubers of the warm-season aquatic plants [43,45]. Flooded vegetation types that are not preferential
to birds or compete with their primary food species may indicate sub-lake differences in habitat quality,
which may be important in light of reported declines in tuber-producing species along central Yangtze
River [1,59,82,83]. Higher proportion of flooded vegetation could also indirectly signal other habitat
characteristics; for instance, shallower water column allowing for greater abundance of macrophytes
may restrict activities of diving and swimming species.

Although proportions of cover types directly associated with potential human disturbance within
lake neighborhoods were not frequently associated with response variables, similar to evidence from
other wetlands [18], we cannot rule out the potential effects of human disturbance on bird distributions
and statistical importance of other variables. For instance, larger sub-lakes may provide better
opportunities to avoid human presence, while higher greenness of some emergent grasslands may
be driven by lower grazing pressure by domestic livestock due to limited wetland access. A variety
of human-driven stressors at Poyang Lake, such as poaching, fishing, and livestock herding [5,43,49],
may not be captured with remote sensing data alone. Hence, future work should incorporate the
information on roads, elevation, and soil characteristics to more explicitly address the effect of human
activities on bird spatial distribution and behavior.

Our results also show that sets of predictors describing complementary habitat features may be
more useful in models of diversity and abundance than single variables. Consistent inclusion of several
predictors in the lowest AICc models (Table 6) suggests that not only their individual importance, but
also their synergy could elucidate conditions favoring certain diversity levels. Collectively, results
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indicate that bird community diversity and abundance were on average higher in larger sub-lakes with
relatively small but heterogeneous component of flooded vegetation, non-vegetated mudflat and green
emergent grassland with more uniform patches. This description matches several spatially close lakes
that have been previously reported as diversity hotspots [42,43,45,54]. In contrast, smaller sub-lakes
with more flooded vegetation in winter and the lack of bare mudflat were associated with lower
diversity and abundance and exhibited spatial clustering with respect to these two characteristics.
However, the latter conditions should not be immediately interpreted as “non-desirable” for wetland
management, since theoretically they might be critical for selected bird species or their diet components,
which should be investigated in the future.

4.2. Spatial Autocorrelation in Diversity and Abundance Models

Significant spatial autocorrelation detected in multiple models with high support presents an
important caveat for landscape analyses of bird diversity and abundance due to the risk of violating key
assumptions of linear regression. Our results suggest that significant spatial autocorrelation in selected
models could arise both from model specification and from the underlying spatial patterns in landscape
variables (Figure 4). Specifically, higher effectiveness of spatial error models at correcting for spatial
autocorrelation for species richness likely reflected the absence of important but spatially structured
variables [84], such as the availability of tubers from warm-season summer aquatic plants [43] that
were not sampled in the 2006 bird survey. The importance of spatial error models may also question
the utility of sub-lake units to represent spatial patterns in diversity, particularly among adjacent water
bodies which may be utilized by the same bird flocks more frequently and thus function as a single
landscape unit in representing bird communities (Figure 4).

At the same time, stronger support for spatial lag models for the number of food guilds, the
number of birds and the number of tuberfeeders suggests potential importance of yet unknown
second-order spatial interactions [34,39] among sub-lakes that should be studied further. For
instance, moderate intra-specific or intra-guild competition for resources and foraging space may
be hypothesized to force large groups of birds to disperse over spatially close sub-lakes, producing
similar community composition and autocorrelated bird counts. Alternatively, spatial autocorrelation
in food resources caused by distance-sensitive dispersal of aquatic vegetation, fish and invertebrates
could make close sub-lakes attractive to similar bird species and foraging guilds [18]. Location of
significant response and predictor clusters within natural reserve territories also suggest that reserve
management and restriction of human activities could play a role in these interactions and the overall
habitat suitability for avifauna.

4.3. Uncertainties in Models and Study Limitations

Several limitations of this study should be considered in the interpretation and generalization of
the findings. A particularly important constraint was the timing of 2006 bird survey which represented
only a short-term portion of waterbird distributions during the wintering season. From these data
alone, we could not estimate observation error or assess the dynamics of sub-lake habitat use by
different species and of the wetland landscape itself. Although major clusters of bird diversity in
these data were generally consistent with reports from other years [44,54], one-time surveys make it
problematic to verify whether bird distribution displayed their “typical” spatial pattern of the winter
season or had been affected by a temporary “aggregate shock” e.g., due to prior burning of reeds across
the wetland in 2006. Unfortunately, most of the basin-wide Poyang Lake surveys to date has been
conducted as a one-time effort per winter, with different method of observation and timing within
the season, which limits the possibility of their comparisons and remains an important challenge for
monitoring programs [42,44,54].

The unexplained variation in regressions also suggests that useful predictors could be missing
from the model structure. Water level may be such a key missing factor which often determines spatial
location of waterbirds within the study area and access to food resources [8,43,45]; however, spatially
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explicit water level data have not been monitored at the sub-lake scale in the Poyang Lake region.
Finally, study results could be affected by more general constraints of remote sensing analyses in
wetlands, such as heterogeneity of wetland surface as a challenge to classification accuracy that may be
partially addressed by OBIA [29,57,85] and relatively coarse resolution of 30-m Landsat data obscuring
local patterns of vegetation composition and micro-topography [57].

4.4. Implications for Wetland Management and Conservation

Our results corroborate the utility of remote sensing to provide cost-effective, landscape-scale
habitat variables to complement ground observations and ultimately inform monitoring, management
and conservation in vulnerable wetland regions such as Poyang Lake [1,3,12,49,59,61]. In particular,
non-vegetated seasonal mudflat and shallow water interfaces with low spectral greenness appear to
be important potential targets for these efforts. At Poyang Lake and other periodically inundated
wetlands globally [13,77,86], these habitat components may change their spatial position throughout
the low water winter season due to fluctuations in adjacent water bodies and spread of emergent
grasses [10,51]. Although with the one-time 2006 survey it was not possible to examine whether
birds had been “tracking” mudflats, a survey later in winter season of 2009 reported higher waterbird
aggregations close to Poyang Lake center [42] where mudflats are expected to become flood-free later
than in peripheral sub-lakes [51]. Being directly adjacent to water bodies, mudflat habitats and hence
their supported avian groups may be particularly vulnerable to hydrological changes caused by shifts
in climate and new water control structures [45,47]. Thus, future management and projections of
waterbird habitat should consider pre-allocating for potential redistributions of these cover types
throughout the winter season.

Importantly, the “snapshot” patterns of bird distributions and habitat properties from individual
surveys and remote sensing images are shaped by seasonal and inter-annual ecological processes and
interactions underlying the distribution of foraging space, resources and risk factors [7,8,18,40,43].
Thus, to better understand the effects of selected habitat predictors on bird diversity and abundance,
their associations need to be further investigated in the broader spatio-temporal context of wetland
dynamics, which can also be greatly facilitated by remote sensing. For instance, seasonal transitions of
Poyang Lake habitats may be captured by multi-date remote sensing analyses as “dynamic cover type”
analyses of wetland zones with similar patterns of change within annual flood cycles [51,52,58] and
then coupled with seasonally repeated waterbird surveys [7,8]. Such analyses are urgently needed at
the whole-wetland scale given recent declines in several important waterbird species along the Yangtze
River [49] and threats to wetland hydro-ecological regimes from the water control projects [8,45,47,48].

Efforts to improve the frequency of waterbird surveys and incorporate habitat dynamics into the
analyses of diversity and abundance may also benefit from complementary remote sensing technology.
Near-surface wireless acoustic sensors, phenocam photography and uninhabited aerial vehicle surveys
may be used to provide local observations of both bird communities and landscape properties at high
spatial resolution and temporal frequency. These datasets may be further combined with the analyses
of optical and active remote sensing (e.g., radar) images [51] to fill the gaps in their time series, provide
local reference information on limited-access sites and ultimately inform selection and validation of
wetland biodiversity and habitat models.

5. Conclusions

Remote sensing offers important strategies to characterize landscape ecosystems and habitats
in large wetland regions with constrained field access and limited ecological data. This capacity
is critical for understanding the habitat utilization and non-uniform patterns of bird community
diversity and abundance that are of high interest to conservation, management and adaptation to
future environmental changes. This study investigated spatial relationships among several metrics of
waterbird diversity and abundance and remotely sensed characteristics of their wetland habitat at 51
sub-lakes within the Poyang Lake basin, one of the largest Ramsar protected biodiversity hotspots
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in Southeast Asia. Several landscape variables from Landsat satellite data were strongly associated
with bird community metrics, including sub-lake area and spectral greenness (NDVI) of emergent
grassland with positive effect and the proportion of flooded vegetation and NDVI of mudflats with
negative effect. These associations elucidate the importance of lake size and specific wetland habitat
features along the local inundation gradients in explaining bird diversity and abundance patterns
beyond species- or guild-specific analyses alone.

Our results also revealed significant spatial dependence in some of the habitat variables
and bird diversity and abundance metrics, as well as in their regression models. This spatial
autocorrelation leads to violation of linear regression assumptions and points to shortcomings of
the model specification, such as the lack of potentially important predictors related to water depth
and food resources that have not been yet characterized at the whole-basin scale. At the same time,
significant local clustering of both waterbird and landscape variables and stronger support for spatial
lag models in some instances suggest that more complex ecological connectivity and second-order
spatial interactions may exist among individual sub-lakes and ultimately contribute to the observed
bird distributions. This evidence calls for more in-depth future investigations of the second-order
spatial interactions among the waterbird community metrics and sub-lake characteristics, as well
as for alternative testing of sub-lake aggregations as spatial units of bird diversity, abundance and
habitat analyses. Association of detected clusters with local nature reserve territories further supports
the relevance of waterbird community analyses using remote sensing-based habitat descriptors to
conservation and management at Poyang Lake. To expand the cost-effective potential of remote
sensing and improve temporal contiguity of bird and habitat surveying, future efforts should take
advantage of complementary sensors including near-surface platforms such as wireless sensor and in
situ phenological observations.
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