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Abstract. The incidence function model (IFM) uses area and connectivity to predict
metapopulation dynamics. However, false absences and missing data can lead to
underestimates of the number of sites contributing to connectivity, resulting in overestimates
of dispersal ability and turnovers (extinctions plus colonizations). We extend estimation
methods for the IFM by using a hierarchical Bayesian model to account both for false
absences due to imperfect detection and for missing data due to sites not surveyed in some
years. We compare parameter estimates, measures of metapopulation dynamics, and forecasts
using stochastic patch occupancy models (SPOMs) among three IFM models: (1) a Bayesian
formulation assuming no false absences and omitting site–year combinations with missing
data; (2) a hierarchical Bayesian formulation assuming no false absences but incorporating
missing data; and (3) a hierarchical Bayesian formulation allowing for imperfect detection and
incorporating missing data. We fit the models to multiyear data sets of occupancy for two bird
species that differ in body size and presumed dispersal ability but inhabit the same network of
sites: the small Black Rail (Laterallus jamaicensis) and the medium-sized Virginia Rail (Rallus
limicola). Incorporating missing data affected colonization parameters and led to lower
estimates of dispersal ability for the Black Rail. Detection rates were high for the Black Rail in
most years but moderate for the Virginia Rail. Incorporating imperfect detection resulted in
higher occupancy and lower turnover rates for both species, with largest effects for the
Virginia Rail. Forecasts using SPOMs were sensitive to both missing data and false absences;
persistence in models assuming no false absences was more optimistic than from robust
models. Our results suggest that incorporating false absences and missing data into the IFM
can improve (1) estimates of dispersal ability and the effect of connectivity on colonization, (2)
the scaling of extinction risk with patch area, and (3) forecasts of occupancy and turnover
rates.

Key words: area; connectivity; false absences; hierarchical Bayesian model; incidence function model;
Laterallus jamaicensis coturniculus and Rallus limicola; metapopulation; missing data; robust design;
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INTRODUCTION

Spatially realistic metapopulation models are used to

understand local extinction and colonization dynamics

of populations in habitat patches connected by occa-

sional dispersal events (Hanski 1998). The most

common of these, the incidence function model (IFM),

only requires data on occupancy, patch size, and

interpatch distances (Hanski 1999). The colonization

probability of a focal site is a function of the occupancy

status of the other sites, their distance to the focal site,

and their area. Extinction probability is primarily

related to patch area. The IFM can be used to estimate

a species’ average dispersal distance and its sensitivity to

patch area (Moilanen 2004). It is also used to create

stochastic patch occupancy models (SPOMs) that

forecast occupancy dynamics and metapopulation per-

sistence (e.g., O’Hara et al. 2002, Bulman et al. 2007).

The IFM has been applied to diverse taxa including

amphibians (ter Braak and Etienne 2003), mammals

(Moilanen et al. 1998, Ozgul et al. 2006), birds (Hanski

1998), and insects (Hanski 1999).

Moilanen (2002) identified three data quality issues

that adversely affected the parameterization of the IFM:

(1) poorly estimated site areas, which led to mischarac-

terizations of the scaling of extinction risk; (2) missing

data, which led to overestimates of dispersal ability; and

(3) false absences, which affected all model components.

Moilanen (2002) advocated the use of GIS methods to

estimate site areas and suggested using average occu-

pancy in multiyear data sets in place of missing data in

calculations of connectivity, which could be adequate if

fewer than 10% of values are missing (Moilanen 2004).

Alternatively, the joint distribution of occupancy for
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missing data can be estimated directly using a hierar-

chical approach, where missing data are treated as

unobserved state variables (ter Braak and Etienne 2003).

False absences are the most problematic of the factors

affecting IFM parameterization (Moilanen 2002) and

occur when surveyors fail to detect the presence of a

species. They lead to overestimates of dispersal ability

and the number of turnovers (local extinctions plus

colonizations). Moilanen (2002) formulated a method

that used an independent estimate of the probability of a

false absence at a site in a year, but it did not allow for

multiple visits to a site within a year and assumed the

probability of detection was constant across time. More

recently, the robust design from capture–recapture

studies (Pollock 1982) has been applied to occupancy

studies. Occupancy at a site is assumed to be closed

within a season and detection rates are estimated from

repeated visits to sites within a season (MacKenzie et al.

2003, 2006). By incorporating imperfect detection rates,

these hierarchical occupancy models account for the

probability of false absences. The effect of covariates for

the detection model (e.g., visit number or year) and the

occupancy model (e.g., area or connectivity) can be

estimated using maximum likelihood (e.g., MacKenzie

et al. 2003, 2006) or a Bayesian approach (e.g., Royle

and Kery 2007, Royle and Dorazio 2008). Covariates

can include occupancy-based connectivity metrics, i.e.,

metrics calculated from the occupancy status of nearby

sites. MacKenzie et al. (2003) noted that metapopula-

tion studies should incorporate false absences into

connectivity. However, incorporating false absences in

models with connectivity leads to a more complicated

hierarchical model because the transition probabilities

of every site depend on the imperfectly known state of

every other site. False absences could potentially be

incorporated into connectivity using classical methods,

such as Monte Carlo kernel likelihood (de Valpine 2004)

or data cloning (Lele et al. 2007), or with a Bayesian

analysis.

In this study, we present a hierarchical Bayesian

formulation of the IFM that incorporates missing data

and imperfect detection and then fit the models to

detection data on two species of secretive rails in

wetland patches in the Sierra Nevada foothills. The

Black Rail (Laterallus jamaicensis) is the smallest (about

30 g) North American rail (Eddleman et al. 1994) and

requires relatively small territories (Legare and Eddle-

man 2001). It may be a poor disperser because it is small,

has a limited geographic range, and performs very short,

low flights on the rare occasions when it leaves dense

vegetation (Taylor 1998). The Virginia Rail (Rallus

limicola) is three times larger than the Black Rail, may

require larger territories, and has a wide geographic

range, all of which suggest it may be a better disperser

than the Black Rail (Conway and Eddleman 1995). Both

species occupy small wetlands amid a matrix predom-

inantly composed of upland pasture that may present a

barrier to dispersal. Additionally, turnovers (extinctions

and colonizations) are frequently observed. Thus, the

network of local populations for each species may

compose a metapopulation.

We compare parameter estimates, measures of meta-

population dynamics, and SPOM outcomes among

three models: (1) a Bayesian formulation of the IFM

assuming no false absences and omitting sites for

particular years in which data were missing (IFM

naive); (2) a hierarchical Bayesian formulation of the

IFM assuming no false absences but incorporating

missing data (IFM missing); and (3) a hierarchical

Bayesian formulation of the IFM allowing for imperfect

detection and incorporating missing data (IFM robust).

To assess the impact of missing data, we compare

whether estimates of dispersal ability differ between the

IFM naive and IFM missing. We make a distinction

between sites where data have been recorded in some

years but not others and unknown sites where no data

have been recorded; we do not address the issue of

unknown sites in this study. To examine the impact of

false absences, we compare the IFM missing to the IFM

robust. For both species, we used each variant of the

IFM to estimate (1) dispersal ability and the scaling of

extinction risk with area, (2) occupancy and turnover

rates, and (3) occupancy dynamics projected for 100

years.

BAYESIAN FORMULATIONS OF THE IFM

The IFM

We summarize the IFM as presented in Moilanen

(2002). Our notation is described in Table 1 (see also

Appendix A). The colonization probability at the ith site

is defined as

Ci;t ¼
S2

i;t

S2
i;t þ d2

ð1Þ

where S2
i;t is the square of the connectivity metric and d2

is a parameter creating a sigmoidally shaped coloniza-

tion probability function. Si,t is a proxy for the number

of migrants that survive from all other sites j in the

network to site i and is

Si;t ¼
Xm

j 6¼i

zj;t�1Ab
j expð�adijÞ: ð2Þ

The quantity zj;t�1Ab
j is a proxy for population size,

where zj,t–1 is the occupancy (0 or 1) at site j in the

previous year, and Aj is its area. The distribution of

dispersal distances is assumed to be inversely related to

the distance between the natal patch j and the focal

patch i by the equation exp(�adij), and a�1 is the

‘‘average dispersal distance’’ (Moilanen 2004), which we

refer to as the dispersal index. Consistent with O’Hara et

al. (2002), we assumed that connectivity was condition-

ally independent of the occupancy of sites in the current

year given occupancy in the previous year.
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Intrinsic extinction rate (Ei ) for the ith site describes
the extinction probability in the absence of immigration
and is independent of time:

Ei ¼ min 1;
l

Av
i

� �
ð3Þ

(see Table 1). The minimum patch area, A0, is the
threshold at or below which the intrinsic extinction rate
is 1 and is equal to l1/v (Moilanen 1999). The rescue

effect occurs when extinction risk is reduced by
immigration from other sites; that is, the distances
between a focal patch and occupied patches affect the

probability of extinction in the focal patch. It is
incorporated into the IFM by multiplying intrinsic

extinction rates by the probability of no recolonization,
(1 � Ci,t) (Hanski 1994, 1999):

Ei;t ¼ ð1� Ci;tÞ min 1;
l
Av

i

� �� �
: ð4Þ

Eq. 4 is appropriate in systems where small sites with
high intrinsic extinction rates can be occupied due to

immigration from nearby sites (Hanski 1994). We
detected rails in small sites that were proximate to
larger sites. Let z denote all occupancy states and let

zi,t�1 be an indicator variable for occupancy at the ith
site in year t – 1. The probability of occupancy is wi,t:

wi;t ¼ zi;t�1ð1� Ei;tÞ þ ð1� zi;t�1ÞCi;t: ð5Þ

This formula is used in likelihood calculations, as

described in the next section.

The IFM assuming perfect detection and omitting

site-years with no data (IFM naive)

In the IFM naive model, an element zi,t–1 of z was

equal to one if there was a detection in any of the visits

to site i in year t – 1 and 0 otherwise (Eq. 5; see Table 1).

Here and throughout we make the standard assumption

that occupancy of a site does not change between the

visits within one year’s survey season (but may change

between years). The likelihood is

Pðz jHÞ ¼
Yn

t¼2

Ym

i¼1

�
wzi;t

i;t ð1� wi;tÞð1�zi;tÞ
�Ii;t

ð6Þ

where Ii,t is an indicator variable equal to 0 if site iwas not

sampled in both years t and t – 1; H¼ (d, b, a, l, v); and
there are m sites and n years. Sites with data in one year

were included in the likelihood when they had data in the

previous year, as it is only possible to calculate wi,t when

zi,t–1 is available (Eq. 5). For example, if site 2 was

surveyed in all years except year 3, then the transitions

from years 2 to 3 and from years 3 to 4 are not

incorporated in parameter estimation. In effect, this

approach assumed the network changed across years to

the extent that the sites surveyed in pairs of years differed.

The same sites in the likelihood for year t were used in

calculating Si,t (i.e., sites with data in year t and t – 1).

The joint posterior distribution of IFMparameters was

estimated via Bayes’ Theorem, P(H j z) ¼ P(z jH)P(H)/R
P(z jH)P(H)dH, where P(z jH) is the likelihood (Eq. 6)

and P(H) are the priors. We used Markov chain Monte

TABLE 1. Notation in the incidence function model (IFM) for IFM naive, IFM missing, and IFM
robust.

Symbol Description

Aj Area of site j.
a Scales the effect of interpatch distance in the dispersal kernel.
b Scales the effect of area on the number of emigrants from a patch.
Ci,t Probability of colonization at site i in year t.
v Scales the effect of area on extinction risk.
d Larger values decrease colonization. Used to convert connectivity to a probability.
di,j The distance between the centroids of sites i and j.
Ei Intrinsic extinction rate at site i (time invariant).
Ei,t Extinction rate at site i in year t with rescue effect.
Ii,t Indicator variable equal to 0 if data are missing at site i in year t; 1 otherwise.
m The total number of sites.
l Larger values increase extinction. In numerator of intrinsic extinction rate.
n The number of years of data.
W1 Probability of occupancy in the first year of data.
wi,t Probability of occupancy at site i in year t.
pt Probability of detection given occupancy in year t.
p Vector of detection probabilities of length n.
qi,t The number of visits to site i in year t.
si,t The number of visits with detections at site i in year t.
Si,t Connectivity at site i in year t.
H Shorthand for the vector of IFM parameters, a, b, d, l, v, and W1 when applicable.
yi,t,r Detection record at site i in year t for replicate (visit) r.
y The three-dimensional array of all detection records (for IFM robust only).
zi,t Occupancy state of site i in year t.
zt Occupancy states from year t.
z Matrix of occupancy states for all sites and all years.
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Carlo (MCMC) and the Metropolis-Hastings (MH)

algorithm with component-wise updating to sample

parameters from their joint conditional distribution (see

Appendix A; e.g., Gilks et al. 1996, Gelman et al. 2004).

Priors are described in Priors, model fitting, and model fit.

The IFM incorporating missing data (IFM missing)

The second model dealt with the unsurveyed site–year

combinations differently by substituting unobserved

random variables for missing data. The unobserved

random variables represent latent states of the popula-

tion. We use the joint posterior distribution of these

states in estimates of connectivity, occupancy, and

turnover rates. We included a model for the first year

of data, where occupancy at a site followed a Bernoulli

distribution with probability equal to W1, although the

formulation could be extended to include covariates.

Our approach differed from O’Hara et al. (2002), who

conditioned all inference on occupancy in the first year,

and from ter Braak and Etienne (2003), who estimated

the posterior distribution of first year data by assuming

quasi-stationarity.

In the IFM missing model, zi,t was the same as for the

IFM naive model for sites with data, but zi,t could be 0

or 1 for sites with missing data according to the

Bayesian posterior probabilities. It is helpful to write

the likelihood of occupancy states by factoring occu-

pancy in different years and canceling conditionally

independent terms:

Pðz jHÞ ¼ Pðzn j zn�1;HÞPðzn�1 j zn�2;HÞ � � �

Pðz2 j z1;HÞPðz1 jHÞ ð7Þ

where now H¼ (d, b, a, l, v, W1). Then, P(zt j zt�1, H) for

t 6¼ 1 is equal to

Ym

i¼1

wzi;t

i;t ð1� wi;tÞð1�zi;tÞ ð8Þ

where wi,t is calculated using Eq. 5, and P(z1 jH) is

calculated with wi,1 equal to W1. Note that the term Si,tþ1
is calculated over all states zt (i.e., including missing

data) (Eq. 2) and then used in colonization and

extinction probabilities (Eqs. 1 and 4). The missing data

are included in the MCMC using block sampling

(Appendix A: Section 3). Priors are described in Priors,

model fitting, and model fit.

Robust-design formulation of the IFM (IFM robust)

The IFM robust is a hierarchical state-space model

that includes an observation model (the detection

model) and a process model (the occupancy model).

Data used in the IFM robust are generated from

multiple surveys at each site within a season, where the

patches are assumed to be closed to changes in

occupancy within a season (MacKenzie et al. 2003,

2006). In the observation model, we used year-specific

detection probabilities, p1, . . . , pn, where p is the vector

of these detection rates, and y denotes all detection data

from all years, including the multiple visits to each site.

This approach is a relatively straightforward way to

account for potential year-to-year variation in surveyors

and/or survey methodology, which characterized our

study system (see Study area and sampling methods).

A state zi,t is assumed to be known perfectly if at least

one detection was recorded. We write the likelihood of

the data as

Pðy jH; pÞ ¼
X

all z¼ 0;1f g
Pðy; z jH; pÞ

¼
X

all z¼ 0;1f g
Pðy j z; pÞPðz jHÞ ð9Þ

where H¼ (d, b, a, l, v, W1) as in the IFM missing. The

term P(y j z, p) is the observation model, and the term

P(z jH) is the process model. The summation is over all

possible combinations of 0 and 1 for all zi,t states; this is

not directly calculated but is reflected in the MCMC

algorithm. When there are multiple visits to an occupied

site, the detections in the observation model follow a

binomial distribution with the probability of a success

equal to the probability of detection, p. Let qi,t and si,t
denote the number of visits and detections (i.e., trials

and successes), respectively, at site i in year t

Pðy j z; pÞ

¼
Yn

t¼1

Ym

i¼1

zi;t

qi;t

si;t

� �
p

si;t

t ð1� ptÞqi;t�si;t þð1� zi;tÞ
� �Ii;t

ð10Þ

(notation described in Table 1). In this case, Ii,t is 1 if site

i was visited in year t, 0 otherwise. Next, the process

model is equal to the likelihood described in Eq. 7. The

latent variables (non-detections and missing data) are

updated in the same manner as the IFM missing using

block sampling. Details are provided in Appendix A:

Section 4.

Priors, model fitting, and model fit

IFM parameters were restricted to non-negative

values, where negative parameter values are biologically

unreasonable (a, b, l, v) or redundant (d). In our

preliminary model estimation, the posterior of some

IFM parameters included zero. We estimated the

posteriors for the log of IFM parameters to allow better

mixing in the region near 0. Initially, we used uniform

priors from�10 to 10 on the logs of a, b, d, l, and v and

from 0 to 1 for W1 and pt. In these preliminary models,

log b was highly correlated with log d at values of log b
greater than 0 (Pearson’s q . 0.95 in both the IFM naive

and IFM missing in both species). Consequently, we

used an informative uniform prior from�10 to 0 on log

b. Values of b greater than one indicate that population

size increases at an increasing rate with area (see Eq. 2);

thus, restricting b to less than 1 has a reasonable

biological interpretation. Furthermore, previous studies

of the IFM often use fixed values for b, with b
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sometimes set to 0.5 (e.g., ter Braak and Etienne 2003,

Bulman et al. 2007). We believe our approach balances

the potential bias introduced assuming a known value

for b with the issues of model overspecification.

Two chains were estimated for each model for each

data set, and convergence was diagnosed using multiple

methods: visual examination of mixing and cumulative

quantile plots (0.025, 0.5, and 0.975), Geweke’s diag-

nostic, and Heidelberger and Welch’s diagnostic (Ap-

pendix B; Cowles and Carlin 1996). We executed

255, 000 iterations per chain in all models, discarded

the first 5000 as the burn-in period, and retained one

iteration for each 100 iterations (i.e., thinning ¼ 100).

Our analysis was done using the software R (R

Development Core Team 2010) and execution times

ranged from 5 hours (Virginia Rail IFM naive) to 55

hours (Black Rail IFM robust) on a 2-GHz AMD

Opteron 246 processor (Penguin Computing, Fremont,

California, USA). Simulated data and MCMC code are

available in the Supplement. WinBUGS can potentially

be used, but we found it to be computationally

impracticable when large distance matrices were used

in connectivity calculations.

We assessed model fit by constructing a Bayesian p

value from the deviance of the posterior predictive

distribution and the deviance of the data, where p values

near 0 or 1 indicate a substantive failure of the model

(Gelman et al. 2004). Details of these calculations are

provided in Appendix B.

Assessing model performance with simulated data sets

To demonstrate the importance of missing data and

the observation model, we fit the IFM models to a

simulated data set where the true states of sites were

perfectly known. A rigorous simulation study with

hundreds of data sets is beyond the scope of the present

investigation. Instead, we focused on one simulated data

set, rather arbitrarily chosen, in order to compare the

models to the true states. We created a network of sites

based on parameters from our field data. Then we

created a 10-year data set based on known IFM

parameter values, and we set 10% of the data to missing

and annual detection rates ranging from 0.2 to 0.9. The

three IFM models were fit to the data, and the resulting

posteriors were used to simulate occupancy for nine

years, starting from the occupancy states in the first year

of the true data set. Using this approach, differences

between the three models were due to differences in

parameter estimates and not initial conditions. The

predicted number of occupied sites and number of

turnovers were then compared to the true states. See

Appendix B for details of the simulation data set and

parameters.

Forward projections using stochastic patch

occupancy models

Stochastic patch occupancy models use transition

probabilities defined by a metapopulation model to

create a Markov chain of occupancy patterns (Moilanen

1999). SPOMs were simulated for a network of 228 sites

(see Study area and sampling methods). For the IFM

naive, a set of parameter values was randomly sampled

from the joint posterior, and initial occupancy was equal

to the most recently observed occupancy state. For the

IFM missing and IFM robust, a set of parameter values

and occupancy in the last year of the study was

randomly sampled from the joint posterior. Transition

probabilities for year t þ 1 were calculated from

occupancy in year t using the IFM parameters (Eq. 5).

For each model variant, a total of 5000 samples from the

joint posterior were used to simulate occupancy

dynamics for 100 years for each sample. We calculated

year-specific occupancy, number of turnovers (extinc-

tions plus colonizations), and the proportion of simu-

lations where global extinction occurred.

Predicted effects of incorporating missing data

and false absences

Missing data if ignored in the analysis may cause an

overestimate of dispersal ability, and false absences can

affect all parameters and lead to inflated turnover

probabilities (Moilanen 2002). We considered how these

data issues would affect a, l, and v. We predicted a
would be smallest in the IFM naive (and the dispersal

index, 1/a, would be largest), intermediate in the IFM

missing (dispersal index intermediate), and largest in the

IFM robust (dispersal index smallest). We did not have

a priori expectations for whether missing data would

affect the parameters determining intrinsic extinction

rate, i.e., l and v. However, we predicted l would be

smaller and v larger in the IFM robust than the other

models, resulting in lower intrinsic extinction rates in the

IFM robust. We predicted turnover rates would be

higher in models that did not incorporate imperfect

detection and that average occupancy would be highest

in the IFM robust. We predicted that SPOMs based on

the IFM naive and IFM missing would have more

variable dynamics and higher rates of global extinction,

as, all else equal, higher turnover rates could increase the

probability of simultaneous local extinctions.

STUDY AREA AND SAMPLING METHODS

The field study was conducted from 2002 to 2008 at

228 sites in Yuba, Butte, and Nevada counties at the

eastern edge of the Central Valley and in the foothills of

the Sierra Nevada Mountains in California (33–790 m).

See Richmond et al. (2008, 2010a) for a map of the study

area and other details. Sites are palustrine emergent

persistent wetlands (Cowardin et al. 1979) separated by

unsuitable pasture or oak savanna. The median site area

was 0.48 ha, and the range was 0.01–13.9 ha. The

median nearest neighbor distance between site centroids

was equal to 0.5 km, and the maximum distance between

any two sites was 49 km.

We attempted to survey all sites in the study area but

were unable to obtain permission from landowners for
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some sites. Sites that exist but were never surveyed are

not accounted for in our models, and thus represent a
potential source of error in our estimation of connec-

tivity. Sites were delineated with a Trimble GPS unit
(Trimble, Sunnyvale, California, USA) by walking the

edge of a wetland, which was defined as having greater
than 50% wetland plants (Cowardin et al. 1979). Areas
were calculated using ArcGIS 9.2 (ESRI, Redlands,

California, USA). Areas of open water were excluded as
rails avoid them. The distance between patches was

measured as the Euclidean distance between the
centroids of sites.

Black Rails were surveyed from May to early August
in 2002–2008 and Virginia Rails were surveyed in 2004–

2008. For Black Rails, we used playback surveys with
stations every 50 m as described in Richmond et al.

(2008). Sites were visited up to three times following a
removal design for Black Rail detections (MacKenzie et

al. 2006). In 2004, separate playbacks were not
conducted for Virginia Rails, but occupancy was noted

when Virginia Rails spontaneously called or responded
to Black Rail playbacks. In 2005, Virginia Rail

playbacks were conducted at two stations anywhere in
a wetland during the first visit but were rarely done

during the second and third visits. From 2006–2008,
Virginia Rail playbacks were conducted whenever a site
was visited at points 100 m apart until a detection was

recorded or the entire wetland was traversed; for details,
see Richmond et al. (2010b). In 2008, the visit protocol

was modified slightly, where sites were visited at least
twice for the Virginia Rail. Surveys were conducted from

30 minutes before sunrise to two hours afterwards and
two hours before to 30 minutes after sunset. For the

Black Rail, there were 109 (49% of sites), 121 (53%), 136
(60%), 169 (74%), 195 (86%), 201 (88%), and 203 (89%)

sites surveyed from 2002 to 2008, respectively. For the
Virginia Rail, there were 107 (47%), 168 (73%), 193

(85%), 201 (88%), and 203 (89%) sites surveyed from
2004 to 2008, respectively. Note that the number of sites

not surveyed exceeded 10%, suggesting that missing data
should be treated in a more exhaustive way than using

the site averages from years with data (i.e., the rule of
thumb from Moilanen 2004). The increasing number of
sites was due to the expansion of the study and

motivated direct treatment of missing data.

RESULTS

Assessing model performance with simulated data

When fit to the simulated data set with false absences

and missing data, the actual occupancy and turnover
fractions that occurred in the simulation were accurately

predicted by the IFM robust, while the IFM missing
performed less well, and the IFM naive performed

poorly. The IFM naive tended to overpredict both
occupancy and turnovers (Fig. 1), which may have been
due to overestimates of dispersal ability resulting from

the missing data. The IFM missing tended to under-
predict occupancy and overpredict turnovers. Compared

to the IFM naive, it predicted occupancy better but

performed only slightly better with respect to turnovers.

The true occupancy and turnover rates were well within

the 95% credible intervals for the IFM robust. The IFM

robust tended to underpredict more often than over-

predict occupancy, although the true numbers of sites

occupied were well within the 95% credible intervals,

and we believe this tendency was negligible.

Detection, occupancy, and turnover rates for rails

Detection probabilities in most years were high for

Black Rails and moderate for Virginia Rails (Fig. 2A, B).

The median probability of detecting a Black Rail per

visit exceeded 0.74 for all years except 2007 (0.36). As a

result, the probability of detecting a Black Rail at a site

with up to three visits exceeded 0.98 for all years except

2007 (0.74). Single visit detection probabilities for

Virginia Rails varied considerably by year; the median

value was lowest in 2004 (0.13) when playback surveys

were used sporadically but ranged from 0.49 to 0.73 in

other years. The probability of detecting a Virginia Rail

at a site with up to three visits ranged from 0.87 to 0.98

except for 2004 (0.34). Thus, false absences should be

expected to have a greater effect on model estimates for

Virginia compared to Black Rails.

The effects of IFM model structure on occupancy and

turnovers depended largely on detectability. For the

highly detectable Black Rail, occupancy (Fig. 2C) and

turnover rates (Fig. 2E) from the three models were

generally similar in all years except 2007, although

turnover rates tended to be somewhat higher in the IFM

missing and intermediate in the IFM robust. In 2007

when detection rates were lowest, occupancy was

substantially higher and turnover was lower in the

IFM robust compared to the other models. For the less

detectable Virginia Rail, in all years occupancy was

higher (Fig. 2D) and turnover was lower (Fig. 2F) in the

IFM robust compared to the IFM naive and IFM

missing.

Effects of model structure on IFM parameters for rails

Colonization parameters appeared to be more strong-

ly affected by incorporating missing data into the IFM

than false absences in the highly detectable Black Rail.

The parameters a and d substantially increased and

decreased, respectively, when missing data were incor-

porated but changed little when false absences were

included, while b differed markedly among the three

models (Fig. 3A–C). Notably, the high value of b in the

IFM no missing suggested that the number of dispersers

leaving a patch increases strongly with patch area, while

the credible interval of b in the IFM missing indicated

highly variable effects, and the narrower credible

interval and median near zero in the IFM robust

indicated weak effects. The median and credible

intervals for d were larger in the IFM naive than in

the other models, while the quantiles for d were similar

in the IFM missing and IFM robust. The dispersal index

February 2011 467ROBUST-DESIGN INCIDENCE FUNCTION MODEL



(i.e., 1/a) in the IFM naive indicated moderate to high

dispersal distance (median 22.4 km, 95% CI 9.6–2729.1)

relative to the scale of our study area, where the

maximum distance between sites was 49 km. However, it

decreased dramatically in the IFM missing and IFM

robust, indicating restricted dispersal ability (median 8.9

km, 95% CI 5.4–18.6; median 8.1 km, 95% CI 5.1–16.6,

respectively; Fig. 3D). The decrease in estimates of the

dispersal index is consistent with predictions.

The effects of missing data and false absences on

colonization parameters in the Virginia Rail were more

variable. The parameter a differed little among the three

models but b varied greatly, and d increased strongly

when false absences were included (Fig. 3A–C).

Notably, the high values of b in the IFM naive indicated

a strong effect of area on the number of dispersers,

whereas b declined to near zero in the IFM missing.

Interestingly, the 95% credible interval of b for the IFM

missing was narrow, while the IFM robust credible

interval was broad, and its posterior for b differed little

from the prior (Fig. 3B). The parameter d was largest in

the IFM robust, which also had the largest credible

intervals. The dispersal index for the Virginia Rail was

much larger than the Black Rail and differed little

among models (Fig. 3D).

Extinction parameters changed little when missing

data were incorporated into IFM models, whereas

incorporating false absences had a larger influence on

parameter estimates for the less-detectable Virginia Rail

than for the Black Rail. Credible intervals for both l
and v overlapped for the three Black Rail models (Fig.

3E, F); l tended to be lower in the IFM robust,

suggesting some effect of false absences. In the Virginia

Rail, l and v were relatively unaffected by missing data,

FIG. 1. Predicted occupancy and turnovers vs. actual occupancy and turnovers from a simulated data set based on a network
with 100 sites, 10% missing data, and year-specific detection rates varying from 0.2 to 0.9. See Appendix B for additional details.
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but l was much lower and v was somewhat higher when

false absences were incorporated in the IFM robust (Fig.

3E, F); this is consistent with predictions. For both

species, minimum patch area (A0) and extinction risk of

median and maximum patch area tended to be lower in

the IFM robust, but differences among models were

much greater for the Virginia Rail (Fig. 3G–I).

Minimum patch area tended to be larger in Virginia

than Black Rails, although the 95% credible intervals of

their respective IFM robust models overlapped. Intrinsic

extinction rates were 1.5–3 times greater for the Virginia

than Black Rail in models assuming perfect detection

(nonoverlapping at median area), but they were similar

when accounting for false absences (Fig. 3H, I).

Based on the posterior predictive P values from the

deviance, model fit of the IFM naive performed poorly

for both the Black and Virginia Rail data sets (P , 0.01

for both). The IFM missing performed adequately for

the Black Rail (P ¼ 0.31), while less well but still

acceptably for the Virginia Rail (P ¼ 0.13). The IFM

robust performed well for both species (P ¼ 0.74 and

0.45, respectively).

Projected occupancy, turnover rates, and persistence

Results from SPOMs for the Black Rail metapopu-

lation were highly variable, and a large proportion of

simulations went extinct in all model variants (Fig. 4A–

C; Fig. 5). Median occupancy approached zero more

FIG. 2. Single-visit detection probabilities by year for the (A) Black Rail and (B) Virginia Rail estimated using the IFM robust.
(C,D) Black and Virginia Rail average occupancy and (E, F) turnover rates estimated using the IFM naive, IFM missing, and IFM
robust. Medians are plotted, and vertical lines represent the 95% credible intervals (0.025–0.975 quantiles).
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slowly in the IFM naive than the IFM missing and IFM

robust (Fig. 4A–C). The 95% credible intervals reveal

considerable variation in the number of sites occupied.

Lower bounds suggest imminent global extinction in all

models. Upper bounds suggest the metapopulation

may have reached quasi-stationary equilibrium in the

IFM naive and IFM missing, while occupancy was still

decreasing in year 100 in the IFM robust. Turnover

rates were highest in the IFM naive and only somewhat

higher in the IFM missing than in the IFM robust (Fig.

4D–F). Contrary to predictions, higher turnover rates

did not lead to a higher proportion of simulations

where global extinction occurred, and in fact, the IFM

naive had fewer global extinctions (about 50%) than the

IFM missing and IFM robust (roughly 80% in both;

Fig. 5A).

SPOMs for the Virginia Rail were highly variable in

the IFM naive but less so in the IFM missing and IFM

robust. Median occupancy was similar in the IFM naive

(nearly 150 sites occupied at equilibrium; Fig. 4G) and

IFM missing (approximately 170; Fig. 4H) but declined

quickly to zero in the IFM robust (Fig. 4I). Occupancy

quickly declined to zero at the 0.025 quantile in the IFM

naive and IFM robust, yet was stable at approximately

140 sites in the IFM missing (Fig. 4G–I). Turnover rates

in the IFM naive and IFM missing were higher than the

IFM robust (Fig. 4J–L), which is consistent with the

presence of false absences. However, these higher rates

FIG. 3. IFM parameters and derived measures of metapopulation dynamics. Dots indicate medians, and lines indicate 95%
credible intervals (0.025–0.975 quantiles). Logs of the IFM parameters were estimated, and back-transformed quantiles are plotted
here. Key to abbreviations: BLRA, Black Rail; VIRA, Virginia Rail; IR, IFM robust; IM, IFM missing; IN, IFM naive. The
dispersal index (D) is equal to 1/a; note the log scale. (G) A0 is the minimum patch area and is calculated as l1/v. Ei (panels H and I)
is the intrinsic extinction rate and is equal to ðl=Av

i Þ. Other variables are defined in Table 1. Note that a, b, d, l, and v are unitless
parameters, and Ei is a probability.
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of turnover did not result in a higher proportion of

global extinctions (Fig. 5B). At year 100, roughly 15% of

simulations went extinct in the IFM naive, 0% in the

IFM missing, and over 85% in the IFM robust.

DISCUSSION

The IFM has been a useful tool in understanding the

dynamics of species existing in discrete habitat patches

with barriers to movement (Hanski 1999). It uses

relatively few data to make powerful predictions about

the persistence of local populations and inform conser-

vation plans (Drechsler et al. 2003, Bulman et al. 2007).

However, applying the IFM to studies with imperfect

detection and missing data can produce biased results

(Moilanen 2002). Models accounting for false absences

in occupancy were recently developed (MacKenzie et al.

2003), and many occupancy studies now incorporate

imperfect detection (e.g., Pellet et al. 2007, Moritz et al.

2008, Nichols et al. 2008, Rizkalla et al. 2009, Kéry and

Royle 2010). Yet, the robust design had not been applied

to the IFM. In this study, we presented a robust

formulation of the IFM that also estimates the full joint

posterior for missing data, and we fit the model to two

data sets.

In years with low detection rates, occupancy and

turnover rates differed between the IFM robust and

other models. Notably, detection of Black Rails was

substantially lower in 2007 than other years, and this

decrease in detection coincided with considerably lower

occupancy (Fig. 2A, C). The reduction in detection rate

may partly have been due to variation among observers,

although there was some overlap in observers from 2006

FIG. 4. Stochastic patch occupancy models for the Black and Virginia Rail. The median number of sites (solid lines) and 0.025
and 0.975 quantiles (dashed lines) occupied by the Black Rail (A–C) and Virginia Rail (G–I) estimated using the joint posterior of
parameters for each model variant. Median number of turnovers (solid lines) and 0.025 and 0.975 quantiles (dashed lines) for the
Black Rail (D–F) and Virginia Rail (J–L).
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to 2008 and all received extensive training. It could also

have been related to a depressed population size, where

fewer individuals at a site would lead to a lower

probability of detection. West Nile virus (WNV)

antibodies were detected in blood samples collected

from this population of Black Rails in the summer of

2007 (unpublished results) after the disease swept

through the region, suggesting WNV may have caused

the population decline. If the decrease in average

occupancy were attributable to an ecological process

not modeled by our formulation of the IFM, then the

IFM robust could potentially underestimate turnovers

in 2007 and 2008 and overestimate false absences in

2007. However, given the increase in detections in 2008,

the average occupancy estimated by the IFM robust

seems plausible. Virginia Rail detectability was relatively

low in most years (Fig. 2B), resulting in large differences

in occupancy and turnover rates between the IFM

robust and other models (Fig. 2D, F). Detection rate

also declined in 2007, as in Black Rails, but was

particularly low in 2004 due to a difference in survey

methodology (see Study area and sampling methods).

Both missing data and false absences affected IFM

estimates of colonization parameters, and accounting

for these forms of error can strengthen inference about

dispersal ability. Notably, the median dispersal index

decreased by 50% for the Black Rail when missing data

and false absences were incorporated, whereas it was

unaffected and large in the Virginia Rail, even after

accounting for these sources of error (Fig. 3A, D).

Moreover, estimates of the effect of patch area on the

number of dispersers (b) were strongly affected by both

missing data and false absences in both species (Fig. 3B).

These results demonstrate that the effects of missing

data and false absences can be difficult to predict, as

evidenced by the differing responses of the two species.

They also suggest that the Virginia Rail can disperse

much greater distances than the Black Rail, which is

consistent with differences in body mass and flight

behavior of the two species (Paradis et al. 1998, Taylor

1998).

Estimates of the parameters of intrinsic extinction rate

and their derived statistics were also affected by false

absences but were not greatly influenced by missing data

(Fig. 3E–I). The lower detection rates for the Virginia

Rail indicated the presence of false absences (Fig. 2),

and, consequently, IFM models that did not account for

them overestimated extinction parameters (Fig. 3E, F).

The Virginia Rail appeared more sensitive to area than

the Black Rail in the IFM naive and IFM missing, but

sensitivity was more similar when false absences and

missing data were accounted for in the IFM robust (Fig.

3H, I). Although the credible intervals overlapped,

minimum patch area was larger for the Virginia than

for the Black Rail in the IFM robust, which is consistent

FIG. 5. Proportion of simulations with global extinction (0 sites occupied) estimated using the IFM naive (dashed line), IFM
missing (solid gray line), and IFM robust (solid black line) for the (A) Black Rail and (B) Virginia Rail.
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with the general pattern that larger species require larger

territories (Schoener 1968).

Forecasts of occupancy dynamics from SPOMs were

also sensitive to missing data and false absences.

Projections that did not account for these sources of

error (IFM naive or IFM missing) tended to be more

optimistic than forecasts that did (IFM robust), despite

the fact that the former models recorded more turnovers

(Fig. 4). Projected persistence differed dramatically

when missing data were incorporated for the Black Rail

(Fig. 5A) and when false absences were estimated for the

Virginia Rail (Fig. 5B).

Although there is increasing recognition that false

absences bias occupancy models, there is little discussion

of the effects of missing data. In the framework of

MacKenzie et al. (2003, 2006), missing data are excluded

from the model likelihood, which is justified on the

grounds that missing data do not contribute to

knowledge of the system. However, this is problematic

for studies examining the effect of occupancy-based

measures of connectivity. Missing data in the IFM cause

the number of sites that contribute dispersers to be

underestimated. In long-term studies where the amount

of missing data is minimal, the average observed

occupancy estimated from years with data may be a

sufficient correction for missing data (Moilanen 2004).

In the Black Rail data set, 12–51% of the sites were

missing data (i.e., were not surveyed each year), which

caused dispersal distance to be overestimated in the IFM

naive (Fig. 3D). Notably, the IFM missing and robust

still did not account for all sites, as on a few occasions

we were unable to gain permission to visit a site from

private landowners. Future studies could extend the

hierarchical models to missing sites that have never been

visited but for which information on area and location

are available, e.g., by using satellite imagery. Simulation

studies could examine the ability of the models to impute

missing values for sites that have never been visited to

determine whether the data on covariates provides

sufficient information for estimating the probability of

occupancy.

This study focused on the incidence function model,

but the issues of missing data and false detections in

explanatory variables could also be incorporated into

other types of occupancy models. Inferences from

studies using connectivity metrics may be especially

sensitive to false absences and missing data. A meta-

analysis of 1015 population networks found that a

landscape connectivity measure (distance to nearest

neighbor) was a poorer predictor of occupancy than

area, but that an occupancy-based connectivity measure

(distance to nearest occupied neighbor) and area had

similar predictive power, although the majority of

variation in occupancy was still unexplained (Prugh et

al. 2008). Incorporating a robust measure of connectiv-

ity could explain a larger amount of the variation in

occupancy. Using a hierarchical Bayesian framework,

we calculated a connectivity metric from the full joint

posterior of the latent states to more accurately estimate

connectivity. These methods could be extended to

logistic regression models (e.g., Program Mark, Pro-
gram Presence). Hierarchical models that incorporate

false absences and missing data in connectivity metrics

may better characterize connectivity and ultimately
improve our understanding of the factors affecting

species distributions in patchy landscapes.
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SUPPLEMENT

R-code used to simulate occupancy data and to fit the IFM naive, IFM missing, and IFM robust models (Ecological Archives
E092-040-S1).
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