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1.Lagrangian Models 
a. Statistical Model of Turbulent Diffusion, Taylor Theory 
b. Langevin Equation 
c. The role of Heterogeneous turbulence  
d. Localized Near Field Theory 
 
2. Large Eddy Simulation 
 
Lagrangian Models 
 
The Lagrangian coordinate framework considers the position of a particle (x,y,z) at time t 
relative to its initial position.  In the Lagrangian frame, a concentration field and its 
turbulent flux are defined by the statistics of an ensemble of dispersing marked fluid 
parcels and the strength and spatial distribution of sources and sinks [M. R. Raupach, 
1989a; Sawford, 1985; J.D. Wilson, 1989]. This approach is valid as long as the molecular 
diffusion within a fluid parcel is negligible in comparison to its turbulent diffusion through 
the atmosphere.   Solid reviews on Lagrangian diffusion [Rodean, 1996; Sawford, 1985; 
Thomson, 1987] and application into plant canopies [M. R. Raupach, 1987; M.R. Raupach, 
1988; M. R. Raupach, 1989a; b; M. R. Raupach and Thom, 1981; J. D. Wilson and 
Sawford, 1996; J. D. Wilson et al., 1981]can be found in a set of papers by such authors as 
Sawford, Raupach, Wilson and Thomson.  
 
The concentration of a scalar can be defined at a particular location and after a given travel 
time using the principle of superposition.    
 
From first principles, a concentration is simply defined as the number of fluid parcels (n) 
observed in a given volume (V) at a specified vector location (r) and time (t):  
 

( , )
( , )

n r t
C r t

V
  

 
To evaluate the concentration of material in time and space we introduce the concept of a 
joint conditional probability density function, P(r,t�ro,to).  It defines the probability that a 
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fluid parcel released from a point in space (ro) and time (to) will be observed at another 
location and time (r,t).  For the case of vertical diffusion, the concentration observed at 
point z and time t is:  
 

t z

o oo o o o

0 0

c(z,t)= P(z,t | , ) S( , )  t t dz dtz z  

The conditional probability of a fluid parcel, labelled Xn, equals one if it is released from 
a reference location (zo) at an initial time (to) and arrives at a volume centered on location 
z at time t; otherwise Xn is zero.   
 
The probability density function for the diffusion of fluid parcels depends only on the 
properties of the turbulent wind field, which must be prescribed.  The joint probability 
density function, P(z,t│zo,to), is difficult to define analytically in such conditions.  Yet, 
P(z,t│zo,to) can be specified using a Markovian "random-walk" approach.  This method 
computes the trajectory of a large number of fluid parcels.  Methods for determining fluid 
parcel movement are derived from the Langevin equation and are discussed by [M.R. 
Raupach, 1988; Rodean, 1996]. 
 
Let’s, consider the simplest case, the statistical properties of one dimensional diffusion, 
as identified by Taylor [Taylor, 1935].  The displacement of fluid parcels can be 
computed as a function of time as a product ot the vertical velocity and time step 
: 

Ldx u dt         

 
where uL is the Lagrangian velocity (m s-1) and dt is differential time increment.    
 
Incremental changes in vertical velocity were computed with the Langevin equation, a 
stochastic differential equation that is weighted by a deterministic forcing (which is a 
function of the fluid parcel’s previous velocity, a memory term) and a random forcing 
term [Thomson, 1987]: 
 
 

)(1 tbua
dt

du   

 
The term  is a random forcing function.   
 
The concept of the Langevin equation evolved from the study of Brownian motion by 
Einstein, back in 1905.  Other work on Brownian motion is attributed to Markov, the 
famous Russian Mathematician. 
 
The white noise term has several distinct properties.  It possesses a uniform spectral 
density.  The term is discontinuous causing sequential values to be decoupled from and 
unrelated to the previous value. Consequently one can define a continuous integral, 
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W T t dt
T

( ) ( ) z 0 , but not a differential, as 
dW t

dt

( )
 is undefined.  On the other hand we 

can define an incremental Weiner process: dW t t dt( ) ( )   
 
For the incremental Wiener process (Arnold, 1979) we ascribe to several rules: 
 
dW t( )  0 

 

| ( )|dW t dt2   

 
Its mean is defined as:  
 
W t w( )  0  

 
and its variance is: 
 
( ( ) )W t w t t  0 0  

 
 

  
 
 
 
 

The terms a(z,t,wL) and b(z,t,wL) are derived from the budget equation for the Eulerian 
probability density function of wL, the Fokker-Planck equation (Thomson, 1987; Rodean, 
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1996). The Fokker-Planck equation is a partial differential equation that describes the 
behavior of the conditional joint probability density function, P.   

2 2
0 0 00 0 0 0 1 0 0 0

2

( , , | , , )( , , | , , ) ( ) ( , , | , , )( , , ) 1

2

b P x u t x u tP x u t x u t a a u P x u t x u tP x u t
u

t x u u

        
   

 

The coefficients a0, a1 and b are equivalent to those produced in the Langevin equation. 
Its Eulerian equivalent of the Lagrangian Langevin equation: 

 
 
A visual example for a simple one-dimensional case is shown below: 
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Figure 1 Probability distribution spreading. More variance. 
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Figure 2 Probability distribution translation, or ‘aging’ 

At an instant in time and a given location in space, the Lagrangian and Eulerian velocities 
are equal. 
 
 
From the Fokker-Planck equation one can deduce that the shape of a joint pdf will vary 
due to ‘advection” and “diffusion.”  The Fokker-Planck equation leads to a form 
reminiscent of the famous Gaussian diffusion equation when a0 and a1 are zero and b is 
one. 
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 when one applies the initial condition 
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Typically, the Gaussian plume diffusion equation represents how the concentration of a 
scalar varies as the plume grows, knowing the source strength Q, (mass length-2): 
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Considering a continuous source, then one solves 
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where q is a continuous source with units of mass length-2 time-1. 
 
These probabilities are a function of the initial velocity and times. 
 
Use of the Fokker-Planck equation (to evaluate the Langevin equation) was 
recommended in the late 1950s by Obukhov, but this suggestion was met with resistance.  
The popularity of the Langevin equation did not rise until the late 1979s and 1980s when 
it was used by Hanna and Gifford at the Atmospheric Turbulence and Diffusion 
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Laboratory.  It was soon applied in canopies by Wilson, Legg and Raupach, but with poor 
success due to the non-uniform turbulent field in the canopy.  Theoretical breakthroughs 
came in 1987 with work by Thomson and his formal derivation of the Langevin equation, 
based on the Fokker-Planck equation.  As Rodean and Sawford explain, Lagrangian 
statistics will be used to solve for b and Eulerian statistics will be used to solve for a0 and 
a1. 
 
Turbulent Diffusion is a Homogeneous Field   
 
To gain a better understanding of the nuances of Lagrangian turbulent diffusion it is 
instructive to first consider diffusion under ideal conditions, where turbulent statistics are 
distributed in a Gaussian manner and the turbulent field is invariant in space (it is 
homogeneous).   
 
The classic description of turbulent motion in homogeneous turbulence is attributed to 
Taylor (1921).  Taylor was the first to treat particle movement for turbulent flow. In 
contrast his predecessors (Markov, Langevin) dealt with Brownian motion.  Independent 
of these early studies, Taylor appreciated the impact of random stochastic motions upon 
the mean turbulent regime. 
 
The derivation of Taylor’s analysis is instructive as it helps us understand several 
fundamental features of Lagrangian diffusion, e.g. near and far field diffusion, which 
have helped us under stand counter gradient transfer in turbulent flow.   For simplicity we 
will only consider vertical diffusion since it is most applicable to our examination of 
diffusion in and above a plant canopy. From first principles, the position of a fluid parcel 
is defined by integrating its velocity over a given time interval, which leads to a 
derivation of Taylor's Diffusion Law.  The time rate of change of the spread of a plume, 
in terms of its variance: 
 

2

2
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where we define the correlation coefficient as: 
 

2

'( ) '( )

'L
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Lagrangian time scale, a measure of the persistence of fluid motion 

0

( )L LT r d 


   

 
Two very important and commonly cited limits can be determined from this analysis, the 
near and far field limits.  It is crucial to defined these limits as many contemporary 
diffusion models (Raupach, 1987; Warland and Thurtell, 2000) use these limits in their 
derivations.  These limits also affect the distinct properties of turbulent diffusion and 
concentrations fields in plant canopies, such as counter-gradient diffusion. 
 

 
Figure 3 After Raupach 1989 [M. R. Raupach, 1989c] 
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Motions are well correlated with one another, showing persistence, so the correlation 
coefficient is one. 
 

1Lr   
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Separate Variables and Integrate with respect to t 
 

2 22z wd tdt    

 
2 2 2
Z W t   

 
So we arrive at an equation that states that the standard deviation of the size of a diffusing 
plume is a function of the standard deviation in vertical velocity fluctuations and the travel 
time, when the travel time is less than the integral time scale: 
 

~ ,Z W Lt t T    

 
Far Field Diffusion 
 
Far field diffusion refers to the case where travel time exceeds the turbulence time scale.  
Parcel motion in the far field is not correlated with initial conditions and can be assumed 
random.  The integration of the autocorrelation function approaches the value of the 
Lagrangian turbulence  
 
Far field limit is defined from the following: 
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2 22Z W LT t   

 
In this situation the plume dispersion is a function of the square root of travel time. 

2Z W LT t   

 
If we compare plume size and travel time we note that the near field plume is much tighter 
for short travel times. 
 

 
Figure 4 Visualization of plume size growth in the far and near field diffusion regimes. 
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In homogeneous turbulence, the Langevin Equation can be solved analytically.  For 
completeness we give the solution [Legg and Raupach, 1982]: 
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where W(t) is considered to be a function of its initial value (W(0)) and a random term.  
The mean of the random term is zero., as is mean vertical velocity.  The covariance between 
random increments at t ans s is: 
 

( ) ( ) ( )s t t s     

 
An important measure for the determination of the spreading of motion (ie. the spreading 
of a cloud) is the variance of the vertical motion around its mean value. This variance can 
be derived by taking the mean value of the W' squared: 
 

2
1

0

' ( ) ' ' (0) 'exp( 2 ) exp( ( ) ( )
t

W W t W W t b a s t s ds      

Evaluating the integral yields: 
 

2

1 1
1

' ( ) ' ' (0) 'exp( 2 ) (1 exp( 2 ))
2

b
W W t W W a t a t

a
      

The coefficients  and b can be derived by considering the covariance for w between time 
0 and t: 
 

1( ) ' (0) ' ' '(0) exp( )w t w w w a t   

 
The coefficient  is a function of the time scale of the motion, since the correlation of w 
between  

 
1

TL

time 0 and time t decreases as the time proceeds.   It is defined as: 

If the mean vertical velocity equals zero then: 
 

12 2w w Lb a T    

 
where w is the Lagrangian velocity variance. For simplicity, it is assumed that the 
Lagrangian and Eulerian velocity variances are identical. 
 
Leading to a workable form of the Langevin equation for Homogeneous turbulence 
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L L

w
dw dt t dt
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The time step �t must be much greater than Ta, the acceleration time scale; Ta is in order 
of TL Re-1/2 (Tennekes and Lumley, 1972).  On the other hand, the period between time 
steps must be small in inhomogeneous turbulence to keep the fractional change in TL 
small between time steps. �t cannot exceed the Lagrangian time scale TL without loosing 
essential information about the motion (Sawford, 1984). Thus Ta << �t<< TL. 
 
Heterogeneous Gaussian Turbulence 
 
Inside a plant canopy, turbulence is inhomogeneous and non-Gaussian (Wilson et al., 1982; 
Raupach, 1988; Baldocchi and Meyers,1988a, 1988b); length, time and velocity scales of 
turbulence vary with height and the probability density functions of the three vector 
velocity components are skewed and kurtotic.  The joint probability density function, P(), 
cannot be specified analytically in non-Gaussian, inhomogeneous turbulence.  Over the 
past twenty years numerous investigators tried to develop algorithms for simulating 
particle movement in canopies with mixed success. 
 
Lagrangian models based on the Langevin equation will fail where the vertical velocity 
variance increases with height, as occurs inside plant canopies.  The vertical gradient in the 
vertical velocity variance imposes a downward drift on a Markovian random flight model.  
This net downward drift occurs because downward directed fluid parcels from above enter 
a lower region with a decreased vertical velocity scale and a reduced probability of leaving 
that region [J. D. Wilson and Sawford, 1996] (Raupach, 1988; Sawford, 1985; Wilson, 
1989).  Accumulation of matter near the surface would otherwise occur in nature if it were 
not for the intermittent gusts that disproportionately transfer matter and maintain 
continuity.  Heuristic arguments have been used to develop approaches to remove the 
unrealistic accumulation of matter that would otherwise occur when using Markov 
sequence models in a field of inhomogeneous turbulence.  One approach introduces an 
additional force term into the Langevin equation.  This method yields a mean upward drift 
velocity in the solution of the differential equation (Wilson et al., 1981; Legg and Raupach, 
1982).  Another method by-passes the addition of a bias velocity by reflecting marked 
particles according to a probability calculated from the gradient in the vertical velocity 
variance (Leclerc et al., 1988).   
 
A series of papers by David Thomson [Thomson, 1987] brought order to the problem of 
simulating Lagrangian diffusion in plant canopies.   Thomson applied the Fokker-Planck 
equation to derive a similar, but statistically defensible relationship.  In his classic paper, 
Thomson outlines several criteria that a random walk model must meet.   
 

1. the well-mixed criterion must hold: if particles are initially well-mixed they will 
remain so in turbulent flow 

2. Eulerian models derived from the Lagrangian model must be compatible with 
Eulerian equations that are derived from first principles. 

3. the model will reduce to the diffusion equation when the Lagrangian time scale 
approaches zero 
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4. the forward and reverse formulations of dispersion are consistent 
5. the small time behavior of the velocity distribution of particles must be correct. 

 
 
Thomson (1987) [Thomson, 1987] wrote a classic paper in 1987 that resolved many of the 
problems associated with predicting turbulent diffusion.  He started with a rigorous 
definition of the Langevin equation 
 

1( , , ) ( , , ) ( )dw a z t w dt b z t w t dt    

 
The coefficients a(z,t,w) and b(z,t,w) are non-linear functions of w and are defined to 
account for inhomogeneous turbulence. The term ddefines a Gaussian, white noise 
random forcing with a mean of zero and a variance of dt.  
 
For the one-dimensional case, where velocity fluctuations and gradients occur only in the 
vertical direction, inhomogeneous turbulence, application of the Fokker-Planck equation 
to  the Langevin equation yields: 
 

2 22
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W WL L

L
L w L

w w
dw dt t dt

T z T

  
 

 
     

 
          

(Wilson et al.,1983; Thomson, 1987).  The middle term is a drift term and compensates for 
the impact of heterogeneous turbulence.  Ad hoc assumptions are still applied.  Most notable 
is the lower boundary condition that reflects particles. 
 



ESPM 228 Advanced Topics on Biometeorology and Micrometeorology 

 14

 
 
 
 
Heterogeneous Gaussian  and non-Gaussian turbulence 
 
It is important to note that the derivations we have discussed so are are based on the 
assumption of Gaussian, random forcing.   While one may define a non-Gaussian model, 
conceptually. In practice one is only able to approximate the criteria for a properly 
designed model (well-mixed criterion, a continuous Markov process).  From a practical 
standpoint the assumption of Gaussian forcing may not be that wrong.   We (Liukang Xu 
and I) have looked at this assumption with our turbulence data and found that the pdf of 
dT/dt is nearly Gaussian even though the pdf of T is skewed and kurtotic. This concept 
has been elaborated and formalized in by past work by Katul. 
 
 
 

 
Figure 5 pdf of dT/dt for temperature over a grazed grassland. 
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Figure 6 pdf of Temperature over a grazed grassland 

 
From a numerical standpont, Wilson, Sawford and others have commented that adding 
non-Guassian increments is illposed and does not yield a suitable numerical solution. 
 
Application 
 
Before we can test the random walk models we address several issues. Of foremost 
importance we must choose the proper time step for parcel motion and we need to know 
how many fluid parcels to release.   
 
Trajectories of fluid parcels were computed with a time step (t) equal to 0.025 TL(h).  
This choice is a based on sensitivity tests of the model.   An equilibrium flux profile is 
commonly observed for mass, energy and momentum transfer over a surface in a fully-
developed boundary layer.  This is not reached until t is equal to or smaller than 0.05 
TL(h).  The concentration profile, on the other hand, is less affected by the time step.   
 
The number of particles is also crucial in generating numerically stable profiles with a 
random walk model.  An optimal number of released parcels must be determined to 
economize on computer time, yet reduce the statistical noise associated with an 
inadequate number of particles.  We found that 5000 parcels is sufficient to achieve a 
stable and repeatable concentration and flux profile.  Smaller numbers of release parcels 
results in 'noisy' profiles and run-to-run variability. 
 
The ultimate test of a random-walk model is whether or not it attains mass conservation.  
For the one-dimensional case, the canopy source.  The amount of material released per 
unit area must equal the integral of concentration profile.  In other words all the material 
released must be accounted for in the atmosphere.  
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In practice the source-sink function, S, is dependent on local concentration, c, and vice 
versa.  Raupach (1988) devised a scheme that computes the interdependence between S and 
c.  The concentration difference between an arbitrary level (ci) and reference level (cr 
located above a plant canopy can be expressed as by summing the contributions of material 
diffusing to or from layers in the canopy (denoted by the subscript j): 

 
N

i, j jj ji r
j=1

- =c c S c D z( )     

The dispersion matrix (Di,j) is solely a function of the turbulence statistics and can be 
computed by uniformly releasing fluid parcels from each canopy level.   
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Figure 7 Dispersion matrix as a function of height and release height. 

 
Note how the dispersion matrix varies with depth and the nose reflects the combined 
impacts of the local source strength and degree of local and distant turbulent mixing.  
Dispersion matrics are near zero for well-mixed flows.  The advantage of using a 
numerical model as opposed to an analytical one is that one is able to incorporate as 



ESPM 228 Advanced Topics on Biometeorology and Micrometeorology 

 17

much information as necessary on local source sink distributions and how turbulence is 
affected by stability and the distribution of foliage. 
 
Our calculations have shown that we need to compute D for different stability classes. 
 
Analytical Near Field/Far Field Theory of Raupach (1989) 
 
The concentration of a traces gas in the atmosphere is the sum of the near and far field 
components: 
 

( ) ( ) ( )n fC z C z C z   

 
The far field concentration field can be solved from the K theory diffusion equation 
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Raupach defines an algorithm for Cn 
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Scaling relations, we learned about last semester, can be applied here for near neutral 
conditions 
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Typical values for a0, a1 and C0 are 0.25, 1.25 and 0.3. 
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For the far field case, the diffusion of a random particle is independent of its travel time.  
This limit occurs when the travel time exceeds the Lagrangian time scale, TL. The 
probability distribution of the spread of an ensemble of particles can be estimated as a 
function of the square root of the travel time.  This behavior is denoted as far field 
diffusion.  
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Warland and Thurtell [Warland and Thurtell, 2000] (2000) revisited this problem and 
derived an algorithm for the dispersion matrix. One criticism of LNF theory identified by 
Warland and Thurtell is that it assumes homogeneous dispersion within fields of 
heterogeneous turbulence.  Using near and far field limits and the Gaussian plume model 
discussed above and the conservation of mass and the identity 
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They produce: 
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Integrating this equation for the near and far field limits of plume growth they produce: 
 
Near field case, z/LL goes to zero 
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Far field case, z/LL goes to infinity, where LL is the Lagrangian length scale. 
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Next Dispersion matrices are defined on the basis of the general relation: 
 

c
Dq

z





 

 
1

;
2 ( )

1
;

2 ( )

s

w s
nf

s

w s

z z
z z

D

z z
z z





     
 
  

 

 
 
 

1
;

2

1
;

2

s
w L

ff

s
w L

z z
L

D

z z
L





     
 
  

 



ESPM 228 Advanced Topics on Biometeorology and Micrometeorology 

 20

 
Next they define a continuous dispersion matrix 
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The authors take this theory farther in their paper and define numerical relations in finite 
difference form, but the work is basically an extension of the previous equation, but it 
contains a reflecting boundary condition at the ground. 
 
Next we show Warland and Thurtells test of their model and a comparison with LNF 
theory. They conclude their model is is closer agreement with measurements inside the 
canopy because they account of better treatment of near field turbulent diffusion. 
 

 
Figure 8 From Warland and Thurtell (2000). 
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A comparison of source strength profiles is shown next 
 

 
Figure 9 from Warland and Thurtell (2000). 
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Next Generation 
 
Hybrid Lagrangian/ Eulerian models.  Massman and Weil and Katul and students are 
starting to use Eulerian models to compute turbulent statistics for Lagrangian models, as a 
means of incorporating aspects of canopy structure, an idea Meyers and I have been 
discussin for years and are just starting to pursue ourselves. 
 
There is also much effort and advancement in the application of Large Eddy Simulation 
models into the plant environment.  The concepts were first applied to the Atmospheric 
Boundary layer by Deardorff, (1970) Moeng (1984) and Wyngaard; Schumann, Mason 
(1994), Andren et al. 1994..  Shaw and Schumann were among the first to apply this 
method to canopies. Later, students and other colleagues of Shaw (Patton et al; Dwyer et 
al; Leclerc; Su et al, Albertson) have worked on this method.   
 
Computers are not powerful enough to directly solve the Navier Stokes Equations at the 
smallest scales (Kolmogorov length scale where viscous dissipation is balanced by shear 
production). DNS (direct numerical simulation) tends to be applied only for flows with 
low Reynolds numbers.  LES is an intermediate member of the model hierarchy between 
higher order closure models that solve for time averaged forms of the Navier-Stokes 
equations and DNS models that resolve all scales.  
 
The LES method performs direct time and space integration of turbulence via the Navier-
Stokes equation across a wide spectrum of scales, down to a unresolvable scales, defined 
by the grid size of the numerical computations. The resolvable grid scale acts as a wave 
cutoff filter.  Smaller scale turbulence  is parameterized using eddy diffusivities. 
 
Basic Equations 
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t x x x
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And the conservation equation 
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u
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



 

 
Expanding these equations in terms of resolved and filtered terms leads to Leonard 
expansion which produces additional covariances. So we can expand u into the resolvable 
and filtered scales (see Mason, 1994).  The filtered scales are averaged over the 
resolution of the grid. 
 

r f
i i iu u u   
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( ) f f ff f f f
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The Leonard rules produce averaging rules similar to Reynolds but for large and small 
scale components. 
 
( ) ( ) ( ) ( ) ( )f f f f r f f f r f r r f

i j i j i j i j i ju u u u u u u u u u     

 
So it Typically, scientists represent the canopy/atmosphere domain as a 96 x96x31.  To 
prescribe proper upper boundary conditions, the grid size is about 2 m, still rather large, 
compared to the resolution of a Lagrangian or Eulerian higher order closure model (eg 40 
layers for a 20 m canopy).  There are still some computational issues with momentum 
transfer at the top of the grid, but efforts are being made to remedy such methodological 
problems. 
 
Albertson et al divided their canopy into 32 by 32 by 100 notes and covered 100 m 
vertically and 200 m horizontally. The time step was 1 second.  Upper boundary 
conditions are a problem with LES. Often a zero flux stress free condition is assumed and 
the horizontal winds are forced with periodic waves of wind.  Hence in early papers by 
Shaw and Schuman the small domain of the canopy did not form a constant flux layer of 
Reynolds shear stress. 
 
The method is very computationally intense, but it produces turbulence statistics that 
resemble field measurements. It has lots of potential in my mind to help us understand 
processes and spatial patterns. Of high importance is the ability of LES models to 
produce information on pressure fields, pressure fluctuations and gradients (mean and 
instantaneous).  Field data is very ambiguous on this matter, as pressure terms are very 
hard to measure independent of effects of wind. 
 
The LES TKE budget will have terms for: 
 
1) Shear production 
2) Buoyant production/destruction 
3) Transport of resolved scale turbulence 
4) Transport of resolved scale pressure fluctuations 
5) Work against form drag by velocity perturbations 
6) Subgrid diffusion of resolved scale TKE 
7) Transfer of resolved scale TKE to subgrid scales. 
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Figure 10 Albertson et al. LAI distribution as applied to an LES model 

 
 
Information produced by LES model 
 

 
Figure 11 Albertson et al 
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Figure 12 Computation of Albertson and Katul 

 
Movies of turbulence in a forest are available on the web at Ned Patton’s web site 
 
I encourage you to check out this web site and run the simulations several times and 
watch the turbulent structures move across the screen. An excellent example of flow 
visualization. 
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