ES 10 Lecture January 28 J. Bartolome Topic: Cosmology and Early Earth History

- 1. Application of systems and hierarchy theory to the topic
- 2. Origins of the universe, the big bang
- 3. Origin of chemical elements
- 4. Origin of solar system and planets
- 5. Comparative planetary science, unique characteristics of the earth's physical systems
- 6. Internal structure of the earth
- 7. Continental drift and plate tectonics

Figures: 2.1 Schlesinger (elemental abundance in solar system); 2.3 Schlesinger (characteristics of inner planets); 2.2 Allaby (earth's plates)

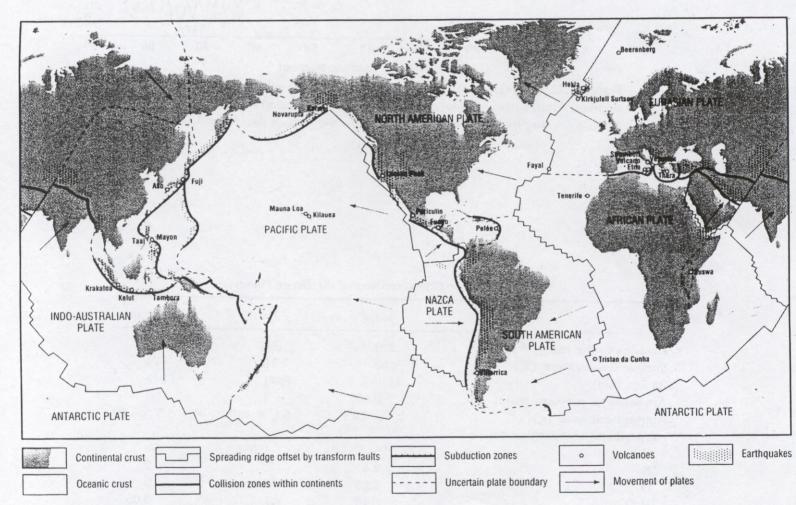
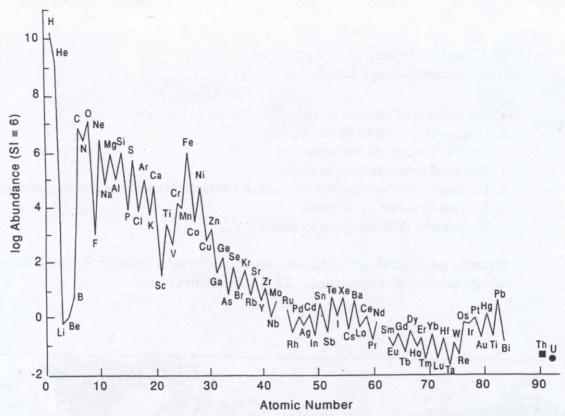



Figure 2.2 Plate structure of the Earth and seismically active zones

• Figure 2.1 The relative abundance of elements in the solar system as a function of atomic number. Abundances are plotted logarithmically and scaled so that silicon (Si) = 1,000,000. From a drawing by Brownlee (1992) based on the data of Anders and Grevesse (1989).

Table 2.3 Some Characteristics of the Inner Planets

	Mars ^a	Earth	Venus ^b
Distance to the sun (10 ⁶ km)	228	150	108
Surface temperature (°C)	-53	16	474
Radius (km)	3390	6371	6049
Atmospheric pressure (bars)	0.007	1	92
Atmospheric mass (g)	2.4×10^{19}	5.1×10^{21}	5.3×10^{23}
Atmospheric composition (% wt.)			
CO ₂	95	0.036	98
N_2	2.5	78	2
O_2	0.25	21	0
H ₂ O	0.10	<1	0.05

[&]quot;From Owen and Biemann (1976).

^b From Nozette and Lewis (1982).