

ES10 March 5, 2001 The Global Carbon Cycle

Topics

- 1. Inventory, fluxes, turnover times: the atmosphere is the smallest of all the carbon reservoirs. Turnover times of carbon in the other reservoirs provide information about the time scale at which the reservoir's CO₂ exchange dominates variations in the atmosphere.
- Fast cycling (~1 year) gas exchange with the surface oceans CO₂ + H₂O ← → H⁺ + HCO₃⁻ CO₃⁻ + H⁺ ← → HCO₃⁻
- 3. Short-term cycling (~10 years on land)
 Photosynthesis: 6CO₂ + 6H₂O → C₆H₁₂O₆ + 6 O₂
 Respiration: reverse
- 4. Long-term cycling (million years) weathering and volcanic eruptions CaCO₃ + CO₂ + H₂O ← → Ca++ + 2HCO₃- CaSiO₃ + 2CO₂ + H₂O ← → Ca++ + 2HCO₃- + SiO₂
- 5. Medium-term cycling: Organic matter that escapes decay is transformed by pressure and temperature into coal, oil and gas. Coal is found in paleo-swampy environments. The Persian Gulf oil and gas reservoirs were formed from marine plants and animals in the Cretaceous-Cenozoic. Tectonic uplift exposes buried coal, oil and gas, which then oxidizes.
- 6. Natural variations in the global carbon cycle are tied to variations in climate e.g. CO₂ varied between 180 ppmv and 280 ppmv between glacial and interglacial periods of the last 420,000 years.
- 7. Human perturbations current atmospheric CO2 >350ppmv, increasing steadily at 1.5 ppmv/y. Concentration is higher than any time in the past 420,000 years; increase rate is also fastest in the past 420,000 years.

Carbon Reservoir	Inventory (PgC)		Annual Fluxes into and out of reservoir (PgC/yr	Turnover time (years)
Atmosphere	720	orae or	Alleren errenen	inventory, flaxes,
Ocean	38,400		+/- 90	700
Total Inorganic C	37,400		acceptant (CD) a r	
Surface Layer	encoor orginus outil	670		
Deep Ocean		36,730		
Total Organic C	1,000			
Aquatic Biosphere		1-2	+/- 50	< 0.04
Land Biosphere	2,000		+/- 60	35
Live biomass	800		35	15 (20)
Dead biomass	1,200			20
Lithosphere	>75,000,000		+/- 0.1 0.2	>400 million
Sedimentary carbonates	>60,000,000		THE THE STREET	
Kerogens	15,000,000			
Fossil Fuels	4,130		-5 10	s that officersqua

